14 research outputs found

    Nonuniformly Loaded Stack of Antiplane Shear Cracks in One-Dimensional Piezoelectric Quasicrystals

    Full text link
    Representations in a closed form are derived, using an extension to the method of dislocation layers, for the phonon and phason stress and electric displacement components in the deformation of one-dimensional piezoelectric quasicrystals by a nonuniformly loaded stack of parallel antiplane shear cracks. Their dependence upon the polar angle in the region close to the tip of a crack is deduced, and the field intensity factors then follow. These exhibit that the phenomenon of crack shielding is dependent upon the relative spacing of the cracks. The analogous analyses, that have not been given previously, involving non-piezoelectric or non-quasicrystalline or simply elastic materials can be straightforwardly considered as special cases. Even when the loading is uniform and the crack is embedded in a purely elastic isotropic solid, no explicit representations have been available before for the components of the field at points other than directly ahead of a crack. Typical numerical results are graphically displayed
    corecore