46 research outputs found

    Methsnotrophic Biodegradation of Trichloroethylene in a Hollow Fiber Membrane Bioreactor

    Get PDF
    Biodegradation of Trichloroethlyene (TCE) in a Hollow Fiber Membrane Bioreactor Was Investigated using a Mutant of the Methanotrophic Bacteria, Methylosinus Trichosporium 0B3b. Contaminated Water Flowed through the Lumen (I.e., Fiber Interior), and the Bacteria Circulated through the Shell Side of the Membrane Module and an External Growth Reactor. in Mass Transfer Studies with a Radial Cross-Flow Membrane Module, 78.3-99.9% of the TCE Was Removed from the Lumen at Hydraulic Residence Times of 3-15 Min in the Lumen and the Shell. in Biodegradation Experiments, 80-95% of the TCE Was Removed from the Lumen at Hydraulic Residence Times of 5-9 Min in the Lumen. the TCE Transferred to the Shell Was Rapidly Biodegraded, with Rate Constants Ranging from 0.16 to 0.9 L (Mg of TSS)-1 Day-1. Radiochemical Data Showed that over 75% of the Transferred TCE Was Biodegraded in the Shell, with the Byproducts Being Approximately Equally Divided between Carbon Dioxide and Nonvolatiles. This Study Shows that a Hollow Fiber Membrane Bioreactor System Coupled with the Mutant Strain PP358 of M. Trichosporium 0B3b is a Very Promising Technology for Chlorinated Solvent Biodegradation. © 1995, American Chemical Society. All Rights Reserved

    Cometabolism of Trihalomethanes by Nitrosomonas europaea

    No full text
    The ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) was shown to degrade low concentrations (50 to 800 μg/liter) of the four trihalomethanes (trichloromethane [TCM], or chloroform; bromodichloromethane [BDCM]; dibromochloromethane [DBCM]; and tribromomethane [TBM], or bromoform) commonly found in treated drinking water. Individual trihalomethane (THM) rate constants ([Formula: see text]) increased with increasing THM bromine substitution, with TBM > DBCM > BDCM > TCM (0.23, 0.20, 0.15, and 0.10 liters/mg/day, respectively). Degradation kinetics were best described by a reductant model that accounted for two limiting reactants, THMs and ammonia-nitrogen (NH(3)-N). A decrease in the temperature resulted in a decrease in both ammonia and THM degradation rates with ammonia rates affected to a greater extent than THM degradation rates. Similarly to the THM degradation rates, product toxicity, measured by transformation capacity (T(c)), increased with increasing THM bromine substitution. Because both the rate constants and product toxicities increase with increasing THM bromine substitution, a water's THM speciation will be an important consideration for process implementation during drinking water treatment. Even though a given water sample may be kinetically favored based on THM speciation, the resulting THM product toxicity may not allow stable treatment process performance

    Ammonia-Oxidizing Bacteria in Biofilters Removing Trihalomethanes Are Related to Nitrosomonas oligotropha ▿

    No full text
    Ammonia-oxidizing bacteria (AOB) in nitrifying biofilters degrading four regulated trihalomethanes—trichloromethane, bromodichloromethane, dibromochloromethane, and tribromomethane—were related to Nitrosomonas oligotropha. N. oligotropha is associated with chloraminated drinking water systems, and its presence in the biofilters might indicate that trihalomethane tolerance is another reason that this bacterium is dominant in chloraminated systems
    corecore