85,166 research outputs found

    Study of Strangeness Condensation by Expanding About the Fixed Point of the Harada-Yamawaki Vector Manifestation

    Full text link
    Building on, and extending, the result of a higher-order in-medium chiral perturbation theory combined with renormalization group arguments and a variety of observations of the vector manifestation of Harada-Yamawaki hidden local symmetry theory, we obtain a surprisingly simple description of kaon condensation by fluctuating around the "vector manifestation (VM)" fixed point identified to be the chiral restoration point. Our development establishes that strangeness condensation takes place at about 3 n_0 where n_0 is nuclear matter density. This result depends only on the renoramlization-group (RG) behavior of the vector interactions, other effects involved in fluctuating about the bare vacuum in so many previous calculations being "irrelevant" in the RG about the fixed point. Our results have major effects on the collapse of neutron stars into black holes.Comment: 4 page

    Holographic Meson Spectra in the Dense Medium with Chiral Condensate

    Full text link
    We study two 1/Nc1/N_c effects on the meson spectra by using the AdS/CFT correspondence where the 1/Nc1/N_c corrections from the chiral condensate and the quark density are controlled by the gravitational backreaction of the massive scalar field and U(1) gauge field respectively. The dual geometries with zero and nonzero current quark masses are obtained numerically. We discuss meson spectra and binding energy of heavy quarkonium with the subleading corrections in the hard wall model.Comment: 16 pages, 4 figure

    Light mixed sneutrinos as thermal dark matter

    Full text link
    In supersymmetric models with Dirac neutrino masses, a left-right mixed sneutrino can be a viable dark matter candidate. We examine the MSSM+ν~R\tilde\nu_R parameter space where this is the case with particular emphasis on light sneutrinos with masses below 10 GeV. We discuss implications for direct and indirect dark matter searches, including the relevant uncertainties, as well as consequences for collider phenomenology.Comment: 33 pages, 14 figures; one figure and references adde

    Determination of the Joint Confidence Region of Optimal Operating Conditions in Robust Design by Bootstrap Technique

    Full text link
    Robust design has been widely recognized as a leading method in reducing variability and improving quality. Most of the engineering statistics literature mainly focuses on finding "point estimates" of the optimum operating conditions for robust design. Various procedures for calculating point estimates of the optimum operating conditions are considered. Although this point estimation procedure is important for continuous quality improvement, the immediate question is "how accurate are these optimum operating conditions?" The answer for this is to consider interval estimation for a single variable or joint confidence regions for multiple variables. In this paper, with the help of the bootstrap technique, we develop procedures for obtaining joint "confidence regions" for the optimum operating conditions. Two different procedures using Bonferroni and multivariate normal approximation are introduced. The proposed methods are illustrated and substantiated using a numerical example.Comment: Two tables, Three figure

    The monoclinic phase in PZT: new light on morphotropic phase boundaries

    Get PDF
    A summary of the work recently carried out on the morphotropic phase boundary (MPB) of PZT is presented. By means of x-ray powder diffraction on ceramic samples of excellent quality, the MPB has been successfully characterized by changing temperature in a series of closely spaced compositions. As a result, an unexpected monoclinic phase has been found to exist in between the well-known tetragonal and rhombohedral PZT phases. A detailed structural analysis, together with the investigation of the field effect in this region of compositions, have led to an important advance in understanding the mechanisms responsible for the physical properties of PZT as well as other piezoelectric materials with similar morphotropic phase boundaries.Comment: 5 pages REVTeX file, 6 figures embedded. Presented at the Workshop on "Fundamental Physics of Ferroelectrics" held in Aspen, February 00. To appear in the proceeding

    Origin of the high piezoelectric response in PbZr(1-x)TixO3

    Full text link
    High resolution x-ray powder diffraction measurements on poled PbZr(1-x)TixO3 (PZT) ceramic samples close to the rhombohedral-tetragonal phase boundary (the so-called morphotropic phase boundary, MPB) have shown that for both rhombohedral and tetragonal compositions, the piezoelectric elongation of the unit cell does not occur along the polar directions but along those directions associated with the monoclinic distortion. This work provides the first direct evidence for the origin of the very high piezoelectricity in PZT.Comment: 4 pages, 4 EPS figures embedded. More specific title and abstract. To appear in Phys. Rev. Let

    Soft Phonon Anomalies in the Relaxor Ferroelectric Pb(Zn_1/3Nb_2/3)_0.92Ti_0.08O_3

    Full text link
    Neutron inelastic scattering measurements of the polar TO phonon mode dispersion in the cubic relaxor Pb(Zn_1/3Nb_2/3)_0.92Ti_0.08O_3 at 500K reveal anomalous behavior in which the optic branch appears to drop precipitously into the acoustic branch at a finite value of the momentum transfer q=0.2 inverse Angstroms, measured from the zone center. We speculate this behavior is the result of nanometer-sized polar regions in the crystal.Comment: 4 pages, 4 figure
    corecore