1,501 research outputs found
Breathing Spots in a Reaction-Diffusion System
A quasi-2-dimensional stationary spot in a disk-shaped chemical reactor is
observed to bifurcate to an oscillating spot when a control parameter is
increased beyond a critical value. Further increase of the control parameter
leads to the collapse and disappearance of the spot. Analysis of a bistable
activator-inhibitor model indicates that the observed behavior is a consequence
of interaction of the front with the boundary near a parity breaking front
bifurcation.Comment: 4 pages RevTeX, see also http://chaos.ph.utexas.edu/ and
http://t7.lanl.gov/People/Aric
Controlling domain patterns far from equilibrium
A high degree of control over the structure and dynamics of domain patterns
in nonequilibrium systems can be achieved by applying nonuniform external
fields near parity breaking front bifurcations. An external field with a linear
spatial profile stabilizes a propagating front at a fixed position or induces
oscillations with frequency that scales like the square root of the field
gradient. Nonmonotonic profiles produce a variety of patterns with controllable
wavelengths, domain sizes, and frequencies and phases of oscillations.Comment: Published version, 4 pages, RevTeX. More at
http://t7.lanl.gov/People/Aric
Order Parameter Equations for Front Transitions: Planar and Circular Fronts
Near a parity breaking front bifurcation, small perturbations may reverse the
propagation direction of fronts. Often this results in nonsteady asymptotic
motion such as breathing and domain breakup. Exploiting the time scale
differences of an activator-inhibitor model and the proximity to the front
bifurcation, we derive equations of motion for planar and circular fronts. The
equations involve a translational degree of freedom and an order parameter
describing transitions between left and right propagating fronts.
Perturbations, such as a space dependent advective field or uniform curvature
(axisymmetric spots), couple these two degrees of freedom. In both cases this
leads to a transition from stationary to oscillating fronts as the parity
breaking bifurcation is approached. For axisymmetric spots, two additional
dynamic behaviors are found: rebound and collapse.Comment: 9 pages. Aric Hagberg: http://t7.lanl.gov/People/Aric/; Ehud Meron:
http://www.bgu.ac.il/BIDR/research/staff/meron.htm
Four-phase patterns in forced oscillatory systems
We investigate pattern formation in self-oscillating systems forced by an
external periodic perturbation. Experimental observations and numerical studies
of reaction-diffusion systems and an analysis of an amplitude equation are
presented. The oscillations in each of these systems entrain to rational
multiples of the perturbation frequency for certain values of the forcing
frequency and amplitude. We focus on the subharmonic resonant case where the
system locks at one fourth the driving frequency, and four-phase rotating
spiral patterns are observed at low forcing amplitudes. The spiral patterns are
studied using an amplitude equation for periodically forced oscillating
systems. The analysis predicts a bifurcation (with increasing forcing) from
rotating four-phase spirals to standing two-phase patterns. This bifurcation is
also found in periodically forced reaction-diffusion equations, the
FitzHugh-Nagumo and Brusselator models, even far from the onset of oscillations
where the amplitude equation analysis is not strictly valid. In a
Belousov-Zhabotinsky chemical system periodically forced with light we also
observe four-phase rotating spiral wave patterns. However, we have not observed
the transition to standing two-phase patterns, possibly because with increasing
light intensity the reaction kinetics become excitable rather than oscillatory.Comment: 11 page
Outbreak tracking of Aleutian mink disease virus (AMDV) using partial NS1 gene sequencing
Abstract Background Aleutian Mink Disease (AMD) is an infectious disease of mink (Neovison vison) and globally a major cause of economic losses in mink farming. The disease is caused by Aleutian Mink Disease Virus (AMDV) that belongs to the genus Amdoparvovirus within the Parvoviridae family. Several strains have been described with varying virulence and the severity of infection also depends on the host’s genotype and immune status. Clinical signs include respiratory distress in kits and unthriftiness and low quality of the pelts. The infection can also be subclinical. Systematic control of AMDV in Danish mink farms was voluntarily initiated in 1976. Over recent decades the disease was mainly restricted to the very northern part of the country (Northern Jutland), with only sporadic outbreaks outside this region. Most of the viruses from this region have remained very closely related at the nucleotide level for decades. However, in 2015, several outbreaks of AMDV occurred at mink farms throughout Denmark, and the sources of these outbreaks were not known. Methods Partial NS1 gene sequencing, phylogenetic analyses data were utilized along with epidemiological to determine the origin of the outbreaks. Results The phylogenetic analyses of partial NS1 gene sequences revealed that the outbreaks were caused by two different clusters of viruses that were clearly different from the strains found in Northern Jutland. These clusters had restricted geographical distribution, and the variation within the clusters was remarkably low. The outbreaks on Zealand were epidemiologically linked and a close sequence match was found to two virus sequences from Sweden. The other cluster of outbreaks restricted to Jutland and Funen were linked to three feed producers (FP) but secondary transmissions between farms in the same geographical area could not be excluded. Conclusion This study confirmed that partial NS1 sequencing can be used in outbreak tracking to determine major viral clusters of AMDV. Using this method, two new distinct AMDV clusters with low intra-cluster sequence diversity were identified, and epidemiological data helped to reveal possible ways of viral introduction into the affected herds
Global phylogenetic analysis of contemporary aleutian mink disease viruses (AMDVs)
Abstract Background Aleutian mink disease has major economic consequences on the mink farming industry worldwide, as it causes a disease that affects both the fur quality and the health and welfare of the mink. The virus causing this disease is a single-stranded DNA virus of the genus Amdoparvovirus belonging to the family of Parvoviridae. In Denmark, infection with AMDV has largely been restricted to a region in the northern part of the country since 2001, affecting only 5% of the total Danish mink farms. However, in 2015 outbreaks of AMDV were diagnosed in all parts of the country. Initial analyses revealed that the out breaks were caused by two different strains of AMDV that were significant different from the circulating Danish strains. To track the source of these outbreaks, a major investigation of global AMDV strains was initiated. Methods Samples from 13 different countries were collected and partial NS1 gene was sequenced and subjected to phylogenetic analyses. Results The analyses revealed that AMDV exhibited substantial genetic diversity. No clear country wise clustering was evident, but exchange of viruses between countries was revealed. One of the Danish outbreaks was caused by a strain of AMDV that closely resembled a strain originating from Sweden. In contrast, we did not identify any potential source for the other and more widespread outbreak strain. Conclusion To the authors knowledge this is the first major global phylogenetic study of contemporary AMDV partial NS1 sequences. The study proved that partial NS1 sequencing can be used to distinguish virus strains belonging to major clusters. The partial NS1 sequencing can therefore be a helpful tool in combination with epidemiological data, in relation to outbreak tracking. However detailed information on farm to farm transmission requires full genome sequencing
- …