2,507 research outputs found
Measurement of the effect of Non Ionising Energy Losses on the leakage current of Silicon Drift Detector prototypes for the LOFT satellite
The silicon drift detectors are at the basis of the instrumentation aboard
the Large Observatory For x-ray Timing (LOFT) satellite mission, which
underwent a three year assessment phase within the "Cosmic Vision 2015 - 2025"
long-term science plan of the European Space Agency. Silicon detectors are
especially sensitive to the displacement damage, produced by the non ionising
energy losses of charged and neutral particles, leading to an increase of the
device leakage current and thus worsening the spectral resolution.
During the LOFT assessment phase, we irradiated two silicon drift detectors
with a proton beam at the Proton Irradiation Facility in the accelerator of the
Paul Scherrer Institute and we measured the increase in leakage current. In
this paper we report the results of the irradiation and we discuss the impact
of the radiation damage on the LOFT scientific performance.Comment: 21 pages, 7 figures, 2 tables. Accepted for publication by Journal of
Instrumentation (JINST
Radiation tests of the Silicon Drift Detectors for LOFT
During the three years long assessment phase of the LOFT mission, candidate
to the M3 launch opportunity of the ESA Cosmic Vision programme, we estimated
and measured the radiation damage of the silicon drift detectors (SDDs) of the
satellite instrumentation. In particular, we irradiated the detectors with
protons (of 0.8 and 11 MeV energy) to study the increment of leakage current
and the variation of the charge collection efficiency produced by the
displacement damage, and we "bombarded" the detectors with hypervelocity dust
grains to measure the effect of the debris impacts. In this paper we describe
the measurements and discuss the results in the context of the LOFT mission.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014:
Ultraviolet to Gamma Ray, 91446
Hyper-velocity impact test and simulation of a double-wall shield concept for the Wide Field Monitor aboard LOFT
The space mission LOFT (Large Observatory For X-ray Timing) was selected in
2011 by ESA as one of the candidates for the M3 launch opportunity. LOFT is
equipped with two instruments, the Large Area Detector (LAD) and the Wide Field
Monitor (WFM), based on Silicon Drift Detectors (SDDs). In orbit, they would be
exposed to hyper-velocity impacts by environmental dust particles, which might
alter the surface properties of the SDDs. In order to assess the risk posed by
these events, we performed simulations in ESABASE2 and laboratory tests. Tests
on SDD prototypes aimed at verifying to what extent the structural damages
produced by impacts affect the SDD functionality have been performed at the Van
de Graaff dust accelerator at the Max Planck Institute for Nuclear Physics
(MPIK) in Heidelberg. For the WFM, where we expect a rate of risky impacts
notably higher than for the LAD, we designed, simulated and successfully tested
at the plasma accelerator at the Technical University in Munich (TUM) a
double-wall shielding configuration based on thin foils of Kapton and
Polypropylene. In this paper we summarize all the assessment, focussing on the
experimental test campaign at TUM.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014:
Ultraviolet to Gamma Ray, 91446
Uncovering predictability in the evolution of the WTI oil futures curve
Accurately forecasting the price of oil, the world's most actively traded
commodity, is of great importance to both academics and practitioners. We
contribute by proposing a functional time series based method to model and
forecast oil futures. Our approach boasts a number of theoretical and practical
advantages including effectively exploiting underlying process dynamics missed
by classical discrete approaches. We evaluate the finite-sample performance
against established benchmarks using a model confidence set test. A realistic
out-of-sample exercise provides strong support for the adoption of our approach
with it residing in the superior set of models in all considered instances.Comment: 28 pages, 4 figures, to appear in European Financial Managemen
Tourism income and economic growth in Greece: Empirical evidence from their cyclical components
This paper examines the relationship between the cyclical
components of Greek GDP and international tourism income for
Greece for the period 1976–2004. Using spectral analysis the authors
find that cyclical fluctuations of GDP have a length of about nine
years and that international tourism income has a cycle of about
seven years. The volatility of tourism income is more than eight
times the volatility of the Greek GDP cycle. VAR analysis shows that
the cyclical component of tourism income is significantly influencing
the cyclical component of GDP in Greece. The findings support the
tourism-led economic growth hypothesis and are of particular
interest and importance to policy makers, financial analysts and
investors dealing with the Greek tourism industry
On a generalised model for time-dependent variance with long-term memory
The ARCH process (R. F. Engle, 1982) constitutes a paradigmatic generator of
stochastic time series with time-dependent variance like it appears on a wide
broad of systems besides economics in which ARCH was born. Although the ARCH
process captures the so-called "volatility clustering" and the asymptotic
power-law probability density distribution of the random variable, it is not
capable to reproduce further statistical properties of many of these time
series such as: the strong persistence of the instantaneous variance
characterised by large values of the Hurst exponent (H > 0.8), and asymptotic
power-law decay of the absolute values self-correlation function. By means of
considering an effective return obtained from a correlation of past returns
that has a q-exponential form we are able to fix the limitations of the
original model. Moreover, this improvement can be obtained through the correct
choice of a sole additional parameter, . The assessment of its validity
and usefulness is made by mimicking daily fluctuations of SP500 financial
index.Comment: 6 pages, 4 figure
Accelerator experiments with soft protons and hyper-velocity dust particles: application to ongoing projects of future X-ray missions
We report on our activities, currently in progress, aimed at performing
accelerator experiments with soft protons and hyper-velocity dust particles.
They include tests of different types of X-ray detectors and related components
(such as filters) and measurements of scattering of soft protons and
hyper-velocity dust particles off X-ray mirror shells. These activities have
been identified as a goal in the context of a number of ongoing space projects
in order to assess the risk posed by environmental radiation and dust and
qualify the adopted instrumentation with respect to possible damage or
performance degradation. In this paper we focus on tests for the Silicon Drift
Detectors (SDDs) used aboard the LOFT space mission. We use the Van de Graaff
accelerators at the University of T\"ubingen and at the Max Planck Institute
for Nuclear Physics (MPIK) in Heidelberg, for soft proton and hyper-velocity
dust tests respectively. We present the experimental set-up adopted to perform
the tests, status of the activities and some very preliminary results achieved
at present time.Comment: Proceedings of SPIE, Vol. 8443, Paper No. 8443-24, 201
- …