482 research outputs found

    Counterterms vs. Dualities

    Get PDF
    We investigate and clarify the mutual compatibility of the higher order corrections arising in supergravity and string theory effective actions and the non-linear duality symmetries of these theories. Starting from a conventional tree level action leading to duality invariant equations of motion, we show how to accommodate duality invariant counterterms given as functionals of both electric and magnetic fields in a perturbative expansion, and to deduce from them a non-polynomial bona fide action satisfying the Gaillard-Zumino constraint. There exists a corresponding consistency constraint in the non-covariant Henneaux-Teitelboim formalism which ensures that one can always restore diffeomorphism invariance by perturbatively solving this functional identity. We illustrate how this procedure works for the R^2 \nabla F \nabla F and F^4 counterterms in Maxwell theory.Comment: 15 page

    String Theory, Unification and Quantum Gravity

    Full text link
    An overview is given of the way in which the unification program of particle physics has evolved into the proposal of superstring theory as a prime candidate for unifying quantum gravity with the other forces and particles of nature. A key concern with quantum gravity has been the problem of ultraviolet divergences, which is naturally solved in string theory by replacing particles with spatially extended states as the fundamental excitations. String theory turns out, however, to contain many more extended-object states than just strings. Combining all this into an integrated picture, called M-theory, requires recognition of the r\^ole played by a web of nonperturbative duality symmetries suggested by the nonlinear structures of the field-theoretic supergravity limits of string theory.Comment: 29 pages, 13 figures, 3 tables; Lectures given at the 6th Aegean Summer School "Quantum Gravity and Quantum Cosmology", Chora, Naxos Island, Greece, 12-17 September 201

    Duality covariant non-BPS first order systems

    Get PDF
    We study extremal black hole solutions to four dimensional N=2 supergravity based on a cubic symmetric scalar manifold. Using the coset construction available for these models, we define the first order flow equations implied by the corresponding nilpotency conditions on the three-dimensional scalar momenta for the composite non-BPS class of multi-centre black holes. As an application, we directly solve these equations for the single-centre subclass, and write the general solution in a manifestly duality covariant form. This includes all single-centre under-rotating non-BPS solutions, as well as their non-interacting multi-centre generalisations.Comment: 31 pages, v2: Discussion of the quadratic constraint clarified, references added, typos corrected, published versio

    E{7(7)} Symmetry and Finiteness of N=8 Supergravity

    Full text link
    We study N=8 supergravity deformed by the presence of the candidate counterterms. We show that even though they are invariant under undeformed E{7(7)}, all of the candidate counterterms violate the deformed E{7(7)} current conservation. The same conclusion follows from the uniqueness of the Lorentz and SU(8) covariant, E{7(7)} invariant unitarity constraint expressing the 56-dimensional E{7(7)} doublet via 28 independent vectors. Therefore E{7(7)} duality predicts the all-loop UV finiteness of perturbative N=8 supergravity.Comment: 18 page

    N=8 Counterterms and E7(7) Current Conservation

    Full text link
    We examine conservation of the E7(7) Noether-Gaillard-Zumino current in the presence of N=8 supergravity counterterms using the momentum space helicity formalism, which significantly simplifies the calculations. The main result is that the 4-point counterterms at any loop order L are forbidden by the E7(7) current conservation identity. We also clarify the relation between linearized and full non-linear superinvariants as candidate counterterms. This enables us to show that all n-point counterterms at L=7, 8 are forbidden since they provide a non-linear completions of the 4-point ones. This supports and exemplifies our general proof in arXiv:1103.4115 of perturbative UV finiteness of N=8 supergravity.Comment: 18 page

    Extremal Multicenter Black Holes: Nilpotent Orbits and Tits Satake Universality Classes

    Full text link
    Four dimensional supergravity theories whose scalar manifold is a symmetric coset manifold U[D=4]/Hc are arranged into a finite list of Tits Satake universality classes. Stationary solutions of these theories, spherically symmetric or not, are identified with those of an euclidian three-dimensional sigma-model, whose target manifold is a Lorentzian coset U[D=3]/H* and the extremal ones are associated with H* nilpotent orbits in the K* representation emerging from the orthogonal decomposition of the algebra U[D=3] with respect to H*. It is shown that the classification of such orbits can always be reduced to the Tits-Satake projection and it is a class property of the Tits Satake universality classes. The construction procedure of Bossard et al of extremal multicenter solutions by means of a triangular hierarchy of integrable equations is completed and converted into a closed algorithm by means of a general formula that provides the transition from the symmetric to the solvable gauge. The question of the relation between H* orbits and charge orbits W of the corresponding black holes is addressed and also reduced to the corresponding question within the Tits Satake projection. It is conjectured that on the vanishing locus of the Taub-NUT current the relation between H*-orbit and W-orbit is rigid and one-to-one. All black holes emerging from multicenter solutions associated with a given H* orbit have the same W-type. For the S^3 model we provide a complete survey of its multicenter solutions associated with all of the previously classified nilpotent orbits of sl(2) x sl(2) within g[2,2]. We find a new intrinsic classification of the W-orbits of this model that might provide a paradigm for the analogous classification in all the other Tits Satake universality classes.Comment: 83 pages, LaTeX; v2: few misprints corrected and references adde

    Infrared divergences and harmonic anomalies in the two-loop superstring effective action

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are creditedArticle funded by SCOAP3. This research is partially supported by STFC (Grant ST/L000415/1, String theory, gauge theory & duality

    Black holes in supergravity and integrability

    Get PDF
    Stationary black holes of massless supergravity theories are described by certain geodesic curves on the target space that is obtained after dimensional reduction over time. When the target space is a symmetric coset space we make use of the group-theoretical structure to prove that the second order geodesic equations are integrable in the sense of Liouville, by explicitly constructing the correct amount of Hamiltonians in involution. This implies that the Hamilton-Jacobi formalism can be applied, which proves that all such black hole solutions, including non-extremal solutions, possess a description in terms of a (fake) superpotential. Furthermore, we improve the existing integration method by the construction of a Lax integration algorithm that integrates the second order equations in one step instead of the usual two step procedure. We illustrate this technology with a specific example.Comment: 44 pages, small typos correcte

    An R^4 non-renormalisation theorem in N=4 supergravity

    Full text link
    We consider the four-graviton amplitudes in CHL constructions providing four-dimensional N=4 models with various numbers of vector multiplets. We show that in these models the two-loop amplitude has a prefactor of d^2R^4. This implies a non-renormalisation theorem for the R^4 term, which forbids the appearance of a three-loop ultraviolet divergence in four dimensions in the four-graviton amplitude. We connect the special nature of the R^4 term to the U(1) anomaly of pure N=4 supergravity.Comment: v2: added comments about one-loop UV divergences. Assorted stylistic corrections. Added references. v3: Eq. III.21 corrected and assorted minor corrections and clarifications. Version to be published. v4: minor corrections. 18 pages. one figur

    On duality symmetry in perturbative quantum theory

    Full text link
    Non-compact symmetries of extended 4d supergravities involve duality rotations of vectors and thus are not manifest off-shell invariances in standard "second-order" formulation. To study how such symmetries are realised in the quantum theory we consider examples in 2 dimensions where vector-vector duality is replaced by scalar-scalar one. Using a "doubled" formulation, where fields and their momenta are treated on an equal footing and the duality becomes a manifest symmetry of the action (at the expense of Lorentz symmetry), we argue that the corresponding on-shell quantum effective action or S-matrix are duality symmetric as well as Lorentz invariant. The simplest case of discrete Z_2 duality corresponds to a symmetry of the S-matrix under flipping the sign of the negative-chirality scalars in 2 dimensions or phase rotations of chiral (definite-helicity) parts of vectors in 4 dimensions. We also briefly discuss some 4d models and comment on implications of our analysis for extended supergravities.Comment: 21 pages, Latex v2: comments and references added v3: references and minor comments adde
    • 

    corecore