482 research outputs found
Counterterms vs. Dualities
We investigate and clarify the mutual compatibility of the higher order
corrections arising in supergravity and string theory effective actions and the
non-linear duality symmetries of these theories. Starting from a conventional
tree level action leading to duality invariant equations of motion, we show how
to accommodate duality invariant counterterms given as functionals of both
electric and magnetic fields in a perturbative expansion, and to deduce from
them a non-polynomial bona fide action satisfying the Gaillard-Zumino
constraint. There exists a corresponding consistency constraint in the
non-covariant Henneaux-Teitelboim formalism which ensures that one can always
restore diffeomorphism invariance by perturbatively solving this functional
identity. We illustrate how this procedure works for the R^2 \nabla F \nabla F
and F^4 counterterms in Maxwell theory.Comment: 15 page
String Theory, Unification and Quantum Gravity
An overview is given of the way in which the unification program of particle
physics has evolved into the proposal of superstring theory as a prime
candidate for unifying quantum gravity with the other forces and particles of
nature. A key concern with quantum gravity has been the problem of ultraviolet
divergences, which is naturally solved in string theory by replacing particles
with spatially extended states as the fundamental excitations. String theory
turns out, however, to contain many more extended-object states than just
strings. Combining all this into an integrated picture, called M-theory,
requires recognition of the r\^ole played by a web of nonperturbative duality
symmetries suggested by the nonlinear structures of the field-theoretic
supergravity limits of string theory.Comment: 29 pages, 13 figures, 3 tables; Lectures given at the 6th Aegean
Summer School "Quantum Gravity and Quantum Cosmology", Chora, Naxos Island,
Greece, 12-17 September 201
Duality covariant non-BPS first order systems
We study extremal black hole solutions to four dimensional N=2 supergravity
based on a cubic symmetric scalar manifold. Using the coset construction
available for these models, we define the first order flow equations implied by
the corresponding nilpotency conditions on the three-dimensional scalar momenta
for the composite non-BPS class of multi-centre black holes. As an application,
we directly solve these equations for the single-centre subclass, and write the
general solution in a manifestly duality covariant form. This includes all
single-centre under-rotating non-BPS solutions, as well as their
non-interacting multi-centre generalisations.Comment: 31 pages, v2: Discussion of the quadratic constraint clarified,
references added, typos corrected, published versio
E{7(7)} Symmetry and Finiteness of N=8 Supergravity
We study N=8 supergravity deformed by the presence of the candidate
counterterms. We show that even though they are invariant under undeformed
E{7(7)}, all of the candidate counterterms violate the deformed E{7(7)} current
conservation. The same conclusion follows from the uniqueness of the Lorentz
and SU(8) covariant, E{7(7)} invariant unitarity constraint expressing the
56-dimensional E{7(7)} doublet via 28 independent vectors. Therefore E{7(7)}
duality predicts the all-loop UV finiteness of perturbative N=8 supergravity.Comment: 18 page
N=8 Counterterms and E7(7) Current Conservation
We examine conservation of the E7(7) Noether-Gaillard-Zumino current in the
presence of N=8 supergravity counterterms using the momentum space helicity
formalism, which significantly simplifies the calculations. The main result is
that the 4-point counterterms at any loop order L are forbidden by the E7(7)
current conservation identity. We also clarify the relation between linearized
and full non-linear superinvariants as candidate counterterms. This enables us
to show that all n-point counterterms at L=7, 8 are forbidden since they
provide a non-linear completions of the 4-point ones. This supports and
exemplifies our general proof in arXiv:1103.4115 of perturbative UV finiteness
of N=8 supergravity.Comment: 18 page
Extremal Multicenter Black Holes: Nilpotent Orbits and Tits Satake Universality Classes
Four dimensional supergravity theories whose scalar manifold is a symmetric
coset manifold U[D=4]/Hc are arranged into a finite list of Tits Satake
universality classes. Stationary solutions of these theories, spherically
symmetric or not, are identified with those of an euclidian three-dimensional
sigma-model, whose target manifold is a Lorentzian coset U[D=3]/H* and the
extremal ones are associated with H* nilpotent orbits in the K* representation
emerging from the orthogonal decomposition of the algebra U[D=3] with respect
to H*. It is shown that the classification of such orbits can always be reduced
to the Tits-Satake projection and it is a class property of the Tits Satake
universality classes. The construction procedure of Bossard et al of extremal
multicenter solutions by means of a triangular hierarchy of integrable
equations is completed and converted into a closed algorithm by means of a
general formula that provides the transition from the symmetric to the solvable
gauge. The question of the relation between H* orbits and charge orbits W of
the corresponding black holes is addressed and also reduced to the
corresponding question within the Tits Satake projection. It is conjectured
that on the vanishing locus of the Taub-NUT current the relation between
H*-orbit and W-orbit is rigid and one-to-one. All black holes emerging from
multicenter solutions associated with a given H* orbit have the same W-type.
For the S^3 model we provide a complete survey of its multicenter solutions
associated with all of the previously classified nilpotent orbits of sl(2) x
sl(2) within g[2,2]. We find a new intrinsic classification of the W-orbits of
this model that might provide a paradigm for the analogous classification in
all the other Tits Satake universality classes.Comment: 83 pages, LaTeX; v2: few misprints corrected and references adde
Infrared divergences and harmonic anomalies in the two-loop superstring effective action
This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are creditedArticle funded by SCOAP3.
This research is partially supported by STFC (Grant ST/L000415/1, String
theory, gauge theory & duality
Black holes in supergravity and integrability
Stationary black holes of massless supergravity theories are described by
certain geodesic curves on the target space that is obtained after dimensional
reduction over time. When the target space is a symmetric coset space we make
use of the group-theoretical structure to prove that the second order geodesic
equations are integrable in the sense of Liouville, by explicitly constructing
the correct amount of Hamiltonians in involution. This implies that the
Hamilton-Jacobi formalism can be applied, which proves that all such black hole
solutions, including non-extremal solutions, possess a description in terms of
a (fake) superpotential. Furthermore, we improve the existing integration
method by the construction of a Lax integration algorithm that integrates the
second order equations in one step instead of the usual two step procedure. We
illustrate this technology with a specific example.Comment: 44 pages, small typos correcte
An R^4 non-renormalisation theorem in N=4 supergravity
We consider the four-graviton amplitudes in CHL constructions providing
four-dimensional N=4 models with various numbers of vector multiplets. We show
that in these models the two-loop amplitude has a prefactor of d^2R^4. This
implies a non-renormalisation theorem for the R^4 term, which forbids the
appearance of a three-loop ultraviolet divergence in four dimensions in the
four-graviton amplitude. We connect the special nature of the R^4 term to the
U(1) anomaly of pure N=4 supergravity.Comment: v2: added comments about one-loop UV divergences. Assorted stylistic
corrections. Added references. v3: Eq. III.21 corrected and assorted minor
corrections and clarifications. Version to be published. v4: minor
corrections. 18 pages. one figur
On duality symmetry in perturbative quantum theory
Non-compact symmetries of extended 4d supergravities involve duality
rotations of vectors and thus are not manifest off-shell invariances in
standard "second-order" formulation. To study how such symmetries are realised
in the quantum theory we consider examples in 2 dimensions where vector-vector
duality is replaced by scalar-scalar one. Using a "doubled" formulation, where
fields and their momenta are treated on an equal footing and the duality
becomes a manifest symmetry of the action (at the expense of Lorentz symmetry),
we argue that the corresponding on-shell quantum effective action or S-matrix
are duality symmetric as well as Lorentz invariant. The simplest case of
discrete Z_2 duality corresponds to a symmetry of the S-matrix under flipping
the sign of the negative-chirality scalars in 2 dimensions or phase rotations
of chiral (definite-helicity) parts of vectors in 4 dimensions. We also briefly
discuss some 4d models and comment on implications of our analysis for extended
supergravities.Comment: 21 pages, Latex v2: comments and references added v3: references and
minor comments adde
- âŠ