26 research outputs found

    Quantum synthesis of arbitrary unitary operators

    Get PDF
    Nature provides us with a restricted set of microscopic interactions. The question is whether we can synthesize out of these fundamental interactions an arbitrary unitary operator. In this paper we present a constructive algorithm for realization of any unitary operator which acts on a (truncated) Hilbert space of a single bosonic mode. In particular, we consider a physical implementation of unitary transformations acting on 1-dimensional vibrational states of a trapped ion. As an example we present an algorithm which realizes the discrete Fourier transform.Comment: 6 RevTeX pages with 3 figures, submitted to Phys.Rev.A, see also http://nic.savba.sk/sav/inst/fyzi/qo

    Pfaffian pairing wave functions in electronic structure quantum Monte Carlo

    Full text link
    We investigate the accuracy of trial wave function for quantum Monte Carlo based on pfaffian functional form with singlet and triplet pairing. Using a set of first row atoms and molecules we find that these wave functions provide very consistent and systematic behavior in recovering the correlation energies on the level of 95%. In order to get beyond this limit we explore the possibilities of multi-pfaffian pairing wave functions. We show that a small number of pfaffians recovers another large fraction of the missing correlation energy comparable to the larger-scale configuration interaction wave functions. We also find that pfaffians lead to substantial improvements in fermion nodes when compared to Hartree-Fock wave functions.Comment: 4 pages, 2 figures, 2 tables, submitted to PR

    Quantum versus classical descriptions of sub-Poissonian light generation in three-wave mixing

    Get PDF
    Sub-Poissonian light generation in the non-degenerate three-wave mixing is studied numerically and analytically within quantum and classical approaches. Husimi Q-functions and their classical trajectory simulations are analysed to reveal a special regime corresponding to the time-stable sub-Poissonian photocount statistics of the sum-frequency mode. Conditions for observation of this regime are discussed. Theoretical predictions of the Fano factor and explanation of the extraordinary stabilization of the sub-Poissonian photocount behavior are obtained analytically by applying the classical trajectories. Scaling laws for the maximum sub-Poissonian behavior are found. Noise suppression levels in the non-degenerate vs degenerate three-wave mixing are discussed on different time scales compared to the revival times. It is shown that the non-degenerate conversion offers much better stabilization of the suppressed noise in comparison to that of degenerate process.Comment: 9 pages, 12 figures, to be published in J. Optics

    N-Photon wave packets interacting with an arbitrary quantum system

    Full text link
    We present a theoretical framework that describes a wave packet of light prepared in a state of definite photon number interacting with an arbitrary quantum system (e.g. a quantum harmonic oscillator or a multi-level atom). Within this framework we derive master equations for the system as well as for output field quantities such as quadratures and photon flux. These results are then generalized to wave packets with arbitrary spectral distribution functions. Finally, we obtain master equations and output field quantities for systems interacting with wave packets in multiple spatial and/or polarization modes.Comment: 20 pages, 8 figures. Published versio

    Approximate and exact nodes of fermionic wavefunctions: coordinate transformations and topologies

    Full text link
    A study of fermion nodes for spin-polarized states of a few-electron ions and molecules with s,p,ds,p,d one-particle orbitals is presented. We find exact nodes for some cases of two electron atomic and molecular states and also the first exact node for the three-electron atomic system in 4S(p3)^4S(p^3) state using appropriate coordinate maps and wavefunction symmetries. We analyze the cases of nodes for larger number of electrons in the Hartree-Fock approximation and for some cases we find transformations for projecting the high-dimensional node manifolds into 3D space. The node topologies and other properties are studied using these projections. We also propose a general coordinate transformation as an extension of Feynman-Cohen backflow coordinates to both simplify the nodal description and as a new variational freedom for quantum Monte Carlo trial wavefunctions.Comment: 7 pages, 7 figure

    Linear optics substituting scheme for multi-mode operations

    Get PDF
    We propose a scheme allowing a conditional implementation of suitably truncated general single- or multi-mode operators acting on states of traveling optical signal modes. The scheme solely relies on single-photon and coherent states and applies beam splitters and zero- and single-photon detections. The signal flow of the setup resembles that of a multi-mode quantum teleportation scheme thus allowing the individual signal modes to be spatially separated from each other. Some examples such as the realization of cross-Kerr nonlinearities, multi-mode mirrors, and the preparation of multi-photon entangled states are considered.Comment: 11 pages, 4 eps-figures, using revtex

    Reconstruction of motional states of neutral atoms via MaxEnt principle

    Get PDF
    We present a scheme for a reconstruction of states of quantum systems from incomplete tomographic-like data. The proposed scheme is based on the Jaynes principle of Maximum Entropy. We apply our algorithm for a reconstruction of motional quantum states of neutral atoms. As an example we analyze the experimental data obtained by the group of C. Salomon at the ENS in Paris and we reconstruct Wigner functions of motional quantum states of Cs atoms trapped in an optical lattice

    Quantum description of light pulse scattering on a single atom in waveguides

    Get PDF
    We present a time dependent quantum calculation of the scattering of a few-photon pulse on a single atom. The photon wave packet is assumed to propagate in a transversely strongly confined geometry, which ensures strong atom-light coupling and allows a quasi 1D treatment. The amplitude and phase of the transmitted, reflected and transversely scattered part of the wave packet strongly depend on the pulse length (bandwidth) and energy. For a transverse mode size of the order of λ2\lambda^2, we find nonlinear behavior for a few photons already, or even for a single photon. In a second step we study the collision of two such wave packets at the atomic site and find striking differences between Fock state and coherent state wave packets of the same photon number.Comment: to appear in Phys. Rev.
    corecore