519 research outputs found

    Application of nonlinear deformation algebra to a physical system with P\"oschl-Teller potential

    Full text link
    We comment on a recent paper by Chen, Liu, and Ge (J. Phys. A: Math. Gen. 31 (1998) 6473), wherein a nonlinear deformation of su(1,1) involving two deforming functions is realized in the exactly solvable quantum-mechanical problem with P\" oschl-Teller potential, and is used to derive the well-known su(1,1) spectrum-generating algebra of this problem. We show that one of the defining relations of the nonlinear algebra, presented by the authors, is only valid in the limiting case of an infinite square well, and we determine the correct relation in the general case. We also use it to establish the correct link with su(1,1), as well as to provide an algebraic derivation of the eigenfunction normalization constant.Comment: 9 pages, LaTeX, no figure

    A fast quantum interface between different spin qubit encodings

    Full text link
    Single-spin qubits in semiconductor quantum dots proposed by Loss and DiVincenzo (LD qubits) hold promise for universal quantum computation with demonstrations of a high single-qubit gate fidelity above 99.9 % and two-qubit gates in conjunction with a long coherence time. However, initialization and readout of a qubit is orders of magnitude slower than control, which is detrimental for implementing measurement-based protocols such as error-correcting codes. In contrast, a singlet-triplet (ST) qubit, encoded in a two-spin subspace, has the virtue of fast readout with high fidelity and tunable coupling to the electric field. Here, we present a hybrid system which benefits from the different advantages of these two distinct spin-qubit implementations. A quantum interface between the two codes is realized by electrically tunable inter-qubit exchange coupling. We demonstrate a controlled-phase (CPHASE) gate that acts within 5.5 ns, much faster than the measured dephasing time of 211 ns. The presented hybrid architecture will be useful to settle remaining key problems with building scalable spin-based quantum computers

    Coupling a quantum dot, fermionic leads and a microwave cavity on-chip

    Full text link
    We demonstrate a hybrid architecture consisting of a quantum dot circuit coupled to a single mode of the electromagnetic field. We use single wall carbon nanotube based circuits inserted in superconducting microwave cavities. By probing the nanotube-dot using a dispersive read-out in the Coulomb blockade and the Kondo regime, we determine an electron-photon coupling strength which should enable circuit QED experiments with more complex quantum dot circuits.Comment: 4 pages, 4 figure

    Managing Knowledge in Policymaking and Decision Making

    Full text link
    The combined effect of increasing problem complexity and growing demand for participation in decisions has forced policymaking and decision making in organizations to become less an analytic endeavor and more a process of "knowledge management ' This requires an intermediarv to mediate among conflicting perspectives and integrate the different forms and levels of knowledge This article describes one such approach to knowledge management that utilizes a third party to create and facilitate a temporary task organization Following a brief case example, some research resultsfrom an evaluation of six past applications of the approach are presented These results provide insight into the effective structuring and conduct of knowledge management proceduresPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68626/2/10.1177_107554708600800106.pd
    • 

    corecore