11,422 research outputs found

    High-fidelity readout of trapped-ion qubits

    Full text link
    We demonstrate single-shot qubit readout with fidelity sufficient for fault-tolerant quantum computation, for two types of qubit stored in single trapped calcium ions. For an optical qubit stored in the (4S_1/2, 3D_5/2) levels of 40Ca+ we achieve 99.991(1)% average readout fidelity in one million trials, using time-resolved photon counting. An adaptive measurement technique allows 99.99% fidelity to be reached in 145us average detection time. For a hyperfine qubit stored in the long-lived 4S_1/2 (F=3, F=4) sub-levels of 43Ca+ we propose and implement a simple and robust optical pumping scheme to transfer the hyperfine qubit to the optical qubit, capable of a theoretical fidelity 99.95% in 10us. Experimentally we achieve 99.77(3)% net readout fidelity, inferring at least 99.87(4)% fidelity for the transfer operation.Comment: 4 pages, 3 figures; improved readout fidelity (numerical results changed

    Impact of Flower Harvesting on the Salt Marsh Plant \u3cem\u3eLimonium carolinianum\u3c/em\u3e

    Get PDF
    Because of the potentially detrimental effects of seed production on adult survivorship and growth, moderate flower harvesting may have little negative impact on population growth of long-lived perennial plants such as Limonium carolinianum (Walter) Britton. We examined this by collecting data on survivorship, growth, and fecundity of an unharvested population over a period of 5 years and conducted a controlled experiment to examine the effect of harvesting on adult survivorship and growth over a 3-year period. Data were summarized in the form of a stage structured matrix population model with a stochastic element that incorporated year-to-year variation in transition probabilities. Contrary to our original hypothesis, we found that preventing seed set through removal of flowers did not increase adult survivorship or growth. By determining the harvest level that reduced population growth rate to 1.0, we estimated the maximum sustainable harvest level to be 16%, a value that is approximately half that of reported harvest levels on accessible marshes in the study area. In spite of this, the reported harvest levels are unlikely to drive local populations to extinction in the foreseeable future. Providing the adult population size is \u3e100 and harvest levels are \u3c90%, time to local extinction will exceed 100 years. This is a function of the very high survivorship of adults in this species and the fact that harvesting has no negative impact on adult survivorship or growth. However, because of the long preadult phase in this species (8–9 years) and the fact that fecundity of young adults is low, recovery from overharvesting is extremely slow. Adult population size can be reduced to 25% of its original value in 7 years at high harvest levels, but it will take 34 years on average to recover once harvesting is terminated

    Experimental recovery of a qubit from partial collapse

    Full text link
    We describe and implement a method to restore the state of a single qubit, in principle perfectly, after it has partially collapsed. The method resembles the classical Hahn spin-echo, but works on a wider class of relaxation processes, in which the quantum state partially leaves the computational Hilbert space. It is not guaranteed to work every time, but successful outcomes are heralded. We demonstrate using a single trapped ion better performance from this recovery method than can be obtained employing projection and post-selection alone. The demonstration features a novel qubit implementation that permits both partial collapse and coherent manipulations with high fidelity.Comment: 5 pages, 3 figure

    Pitot pressure in hypersonic flow with condensation.

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76722/1/AIAA-6518-763.pd

    One-loop approximation for the Heisenberg antiferromagnet

    Full text link
    We use the diagram technique for spin operators to calculate Green's functions and observables of the spin-1/2 quantum Heisenberg antiferromagnet on a square lattice. The first corrections to the self-energy and interaction are taken into account in the chain diagrams. The approximation reproduces main results of Takahashi's modified spin-wave theory [Phys. Rev. B 40, 2494 (1989)] and is applicable in a wider temperature range. The energy per spin calculated in this approximation is in good agreement with the Monte Carlo and small-cluster exact-diagonalization calculations in the range 0 <= T < 1.2J where J is the exchange constant. For the static uniform susceptibility the agreement is good for T < 0.6J and becomes somewhat worse for higher temperatures. Nevertheless the approximation is able to reproduce the maximum in the temperature dependence of the susceptibility near T = 0.9J.Comment: 15 pages, 6 ps figure

    Nonextensive hydrodynamics for relativistic heavy-ion collisions

    Full text link
    The nonextensive one-dimensional version of a hydrodynamical model for multiparticle production processes is proposed and discussed. It is based on nonextensive statistics assumed in the form proposed by Tsallis and characterized by a nonextensivity parameter qq. In this formulation the parameter qq characterizes some specific form of local equilibrium which is characteristic for the nonextensive thermodynamics and which replaces the usual local thermal equilibrium assumption of the usual hydrodynamical models. We argue that there is correspondence between the perfect nonextensive hydrodynamics and the usual dissipative hydrodynamics. It leads to simple expression for dissipative entropy current and allows for predictions for the ratio of bulk and shear viscosities to entropy density, ζ/s\zeta/s and η/s\eta/s, to be made.Comment: Final version accepted for publication in Phys. Rev.

    Approximate Analytic Solution for the Spatiotemporal Evolution of Wave Packets undergoing Arbitrary Dispersion

    Full text link
    We apply expansion methods to obtain an approximate expression in terms of elementary functions for the space and time dependence of wave packets in a dispersive medium. The specific application to pulses in a cold plasma is considered in detail, and the explicit analytic formula that results is provided. When certain general initial conditions are satisfied, these expressions describe the packet evolution quite well. We conclude by employing the method to exhibit aspects of dispersive pulse propagation in a cold plasma, and suggest how predicted and experimental effects may be compared to improve the theoretical description of a medium's dispersive properties.Comment: 17 pages, 4 figures, RevTe

    A homological interpretation of the transverse quiver Grassmannians

    Full text link
    In recent articles, the investigation of atomic bases in cluster algebras associated to affine quivers led the second-named author to introduce a variety called transverse quiver Grassmannian and the first-named and third-named authors to consider the smooth loci of quiver Grassmannians. In this paper, we prove that, for any affine quiver Q, the transverse quiver Grassmannian of an indecomposable representation M is the set of points N in the quiver Grassmannian of M such that Ext^1(N,M/N)=0. As a corollary we prove that the transverse quiver Grassmannian coincides with the smooth locus of the irreducible components of minimal dimension in the quiver Grassmannian.Comment: final version, 7 pages, corollary 1.2 has been modifie
    corecore