14,344 research outputs found

    An Advanced, Three-Dimensional Plotting Library for Astronomy

    Get PDF
    We present a new, three-dimensional (3D) plotting library with advanced features, and support for standard and enhanced display devices. The library - S2PLOT - is written in C and can be used by C, C++ and FORTRAN programs on GNU/Linux and Apple/OSX systems. S2PLOT draws objects in a 3D (x,y,z) Cartesian space and the user interactively controls how this space is rendered at run time. With a PGPLOT inspired interface, S2PLOT provides astronomers with elegant techniques for displaying and exploring 3D data sets directly from their program code, and the potential to use stereoscopic and dome display devices. The S2PLOT architecture supports dynamic geometry and can be used to plot time-evolving data sets, such as might be produced by simulation codes. In this paper, we introduce S2PLOT to the astronomical community, describe its potential applications, and present some example uses of the library.Comment: 12 pages, 10 eps figures (higher resolution versions available from http://astronomy.swin.edu.au/s2plot/paperfigures). The S2PLOT library is available for download from http://astronomy.swin.edu.au/s2plo

    Ejection of Supernova-Enriched Gas From Dwarf Disk Galaxies

    Full text link
    We examine the efficiency with which supernova-enriched gas may be ejected from dwarf disk galaxies, using a methodology previously employed to study the self-enrichment efficiency of dwarf spheroidal systems. Unlike previous studies that focused on highly concentrated starbursts, in the current work we consider discrete supernova events spread throughout various fractions of the disk. We model disk systems having gas masses of 10^8 and 10^9 solar masses with supernova rates of 30, 300, and 3000 per Myr. The supernova events are confined to the midplane of the disk, but distributed over radii of 0, 30, and 80% of the disk radius, consistent with expectations for Type II supernovae. In agreement with earlier studies, we find that the enriched material from supernovae is largely lost when the supernovae are concentrated near the nucleus, as expected for a starburst event. In contrast, however, we find the loss of enriched material to be much less efficient when the supernovae occur over even a relatively small fraction of the disk. The difference is due to the ability of the system to relax following supernova events that occur over more extended regions. Larger physical separations also reduce the likelihood of supernovae going off within low-density "chimneys" swept out by previous supernovae. We also find that, for the most distributed systems, significant metal loss is more likely to be accompanied by significant mass loss. A comparison with theoretical predications indicates that, when undergoing self-regulated star formation, galaxies in the mass range considered shall efficiently retain the products of Type II supernovae.Comment: 16 pages, 14 figures, to appear in Astrophysical Journal; higher resolution figures available through Ap

    Zero-bias Anomaly of Tunneling into the Edge of a 2D Electron System

    Full text link
    We investigate the electron tunneling into the edge of a clean weakly interacting two-dimensional electron gas. It is shown that the corresponding differential conductance G(V)G(V) has a cusp at zero bias, and is characterized by a universal slope dG/dV|dG/dV| at V=0V=0. This singularity originates from the electron scattering on the Friedel oscillation caused by the boundary of the system.Comment: 10 pages, uuencoded compressed Postscript file, to appear in Phys. Rev. B (Rapid Communications

    Roche Lobe Overflow from Dwarf Stellar Systems

    Full text link
    We use both analytical analyses and numerical simulations to examine the evolution of residual gas within tidally-limited dwarf galaxies and globular clusters. If the gas sound speed exceeds about 10% of the central velocity dispersion, as is the case for ionized gas within small stellar systems, the gas shall have significant density at the tidal radius, and the gas may be lost on timescales as short as a few times the sound crossing time of the system. In colder systems, the density at the tidal radius is much lower, greatly reducing the mass loss rate, and the system may retain its gas for a Hubble time. The tidally removed gas shall follow an orbit close to that of the original host system, forming an extended stream of ionized, gaseous debris. Tidal mass loss severely limits the ability of dwarf systems to continuously form stars. The ordinary gas content in many dwarf galaxies is fully ionized during high red-shift epochs, possibly preventing star formation in some systems, leading to the formation of starless, dark-matter concentrations. In either the field or in the center of galaxy clusters, ionized gas may be retained by dwarf galaxies, even though its sound speed may be comparable to or even exceed the velocity dispersion. These processes may help to explain some observed differences among dwarf galaxy types, as well as observations of the haloes of massive galaxies.Comment: 28 pages, LaTeX, AASTex macro

    Poly[[tetra­kis­(μ2-pyrazine N,N′-dioxide-κ2 O:O′)erbium(III)] tris­(perchlorate)]

    Get PDF
    The title three-dimensional coordination network, {[Er(C4H4N2O2)4](ClO4)3}n, is isostructural to that of other lanthanides. The Er+3 cation lies on a fourfold roto-inversion axis. It is coordinated in a distorted square-anti­prismatic fashion by eight O atoms from bridging pyrazine N,N′-dioxide ligands. There are two unique pyrazine N,N′-dioxide ligands. One ring is located around an inversion center, and there is a a twofold rotation axis at the center of the other ring. There are also two unique perchlorate anions. One is centered on a twofold rotation axis and the other on a fourfold roto-inversion axis. The perchlorate anions are located in channels that run perpendicular to (001) and (110) and inter­act with the coordination network through C—H⋯O hydrogen bonds

    Dark Matter Substructure in Galactic Halos

    Full text link
    We use numerical simulations to examine the substructure within galactic and cluster mass halos that form within a hierarchical universe. Clusters are easily reproduced with a steep mass spectrum of thousands of substructure clumps that closely matches observations. However, the survival of dark matter substructure also occurs on galactic scales, leading to the remarkable result that galaxy halos appear as scaled versions of galaxy clusters. The model predicts that the virialised extent of the Milky Way's halo should contain about 500 satellites with circular velocities larger than Draco and Ursa-Minor i.e. bound masses > 10^8Mo and tidally limited sizes > kpc. The substructure clumps are on orbits that take a large fraction of them through the stellar disk leading to significant resonant and impulsive heating. Their abundance and singular density profiles has important implications for the existence of old thin disks, cold stellar streams, gravitational lensing and indirect/direct detection experiments.Comment: Astrophysical Journal Letters. 4 pages, latex. Simulation images and movies at http://star-www.dur.ac.uk:80/~moore

    Density profiles and substructure of dark matter halos: converging results at ultra-high numerical resolution

    Get PDF
    Can N-body simulations reliably determine the structural properties of dark matter halos? Focussing on a Virgo-sized galaxy cluster, we increase the resolution of current ``high resolution simulations'' by almost an order of magnitude to examine the convergence of the important physical quantities. We have 4 million particles within the cluster and force resolution 0.5 kpc/h (0.05% of the virial radius). The central density profile has a logarithmic slope of -1.5, as found in lower resolution studies of the same halo, indicating that the profile has converged to the ``physical'' limit down to scales of a few kpc. Also the abundance of substructure is consistent with that derived from lower resolution runs; on the scales explored, the mass and circular velocity functions are close to power laws of exponents ~ -1.9 and -4. Overmerging appears to be globally unimportant for suhalos with circular velocities > 100 km/s. We can trace most of the cluster progenitors from z=3 to the present; the central object (the dark matter analog of a cD galaxy)is assembled between z=3 and 1 from the merging of a dozen halos with v_circ \sim 300 km/s. The mean circular velocity of the subhalos decreases by ~ 20% over 5 billion years, due to tidal mass loss. The velocity dispersions of halos and dark matter globally agree within 10%, but the halos are spatially anti-biased, and, in the very central region of the cluster, they show positive velocity bias; however, this effect appears to depend on numerical resolution.Comment: 19 pages, 13 figures, ApJ, in press. Text significantly clarifie

    Axiomatic approach to radiation reaction of scalar point particles in curved spacetime

    Full text link
    Several different methods have recently been proposed for calculating the motion of a point particle coupled to a linearized gravitational field on a curved background. These proposals are motivated by the hope that the point particle system will accurately model certain astrophysical systems which are promising candidates for observation by the new generation of gravitational wave detectors. Because of its mathematical simplicity, the analogous system consisting of a point particle coupled to a scalar field provides a useful context in which to investigate these proposed methods. In this paper, we generalize the axiomatic approach of Quinn and Wald in order to produce a general expression for the self force on a point particle coupled to a scalar field following an arbitrary trajectory on a curved background. Our equation includes the leading order effects of the particle's own fields, commonly referred to as ``self force'' or ``radiation reaction'' effects. We then explore the equations of motion which follow from this expression in the absence of non-scalar forces.Comment: 17 pages, 1 figur

    HAT-P-26b: A Low-Density Neptune-Mass Planet Transiting a K Star

    Get PDF
    We report the discovery of HAT-P-26b, a transiting extrasolar planet orbiting the moderately bright V=11.744 K1 dwarf star GSC 0320-01027, with a period P = 4.234516 +- 0.000015 d, transit epoch Tc = 2455304.65122 +- 0.00035 (BJD), and transit duration 0.1023 +- 0.0010 d. The host star has a mass of 0.82 +- 0.03 Msun, radius of 0.79 + 0.10 - 0.04 Rsun, effective temperature 5079 +- 88 K, and metallicity [Fe/H] = -0.04 +- 0.08. The planetary companion has a mass of 0.059 +- 0.007 MJ, and radius of 0.565 + 0.072 - 0.032 RJ yielding a mean density of 0.40 +- 0.10 g cm-3. HAT-P-26b is the fourth Neptune-mass transiting planet discovered to date. It has a mass that is comparable to those of Neptune and Uranus, and slightly smaller than those of the other transiting Super-Neptunes, but a radius that is ~65% larger than those of Neptune and Uranus, and also larger than those of the other transiting Super-Neptunes. HAT-P-26b is consistent with theoretical models of an irradiated Neptune-mass planet with a 10 Mearth heavy element core that comprises >~ 50% of its mass with the remainder contained in a significant hydrogen-helium envelope, though the exact composition is uncertain as there are significant differences between various theoretical models at the Neptune-mass regime. The equatorial declination of the star makes it easily accessible to both Northern and Southern ground-based facilities for follow-up observations.Comment: 16 pages, 9 figures, 5 tables, submitted to Ap
    corecore