93 research outputs found

    A Generalization of the Convex Kakeya Problem

    Full text link
    Given a set of line segments in the plane, not necessarily finite, what is a convex region of smallest area that contains a translate of each input segment? This question can be seen as a generalization of Kakeya's problem of finding a convex region of smallest area such that a needle can be rotated through 360 degrees within this region. We show that there is always an optimal region that is a triangle, and we give an optimal \Theta(n log n)-time algorithm to compute such a triangle for a given set of n segments. We also show that, if the goal is to minimize the perimeter of the region instead of its area, then placing the segments with their midpoint at the origin and taking their convex hull results in an optimal solution. Finally, we show that for any compact convex figure G, the smallest enclosing disk of G is a smallest-perimeter region containing a translate of every rotated copy of G.Comment: 14 pages, 9 figure

    The Fermat-Torricelli problem in normed planes and spaces

    Full text link
    We investigate the Fermat-Torricelli problem in d-dimensional real normed spaces or Minkowski spaces, mainly for d=2. Our approach is to study the Fermat-Torricelli locus in a geometric way. We present many new results, as well as give an exposition of known results that are scattered in various sources, with proofs for some of them. Together, these results can be considered to be a minitheory of the Fermat-Torricelli problem in Minkowski spaces and especially in Minkowski planes. This demonstrates that substantial results about locational problems valid for all norms can be found using a geometric approach

    The isoperimetric theorem for curves on minimal surfaces

    Full text link
    A short proof is given for a sharpened form of the isoperimetric inequality for curves on minimal surfaces.</p

    On some geometric inequalities

    Full text link

    Is a Body Spherical if All its Projections Have the Same I.Q.?

    Full text link

    Intersection and Covering Properties of Convex Sets

    Full text link

    Integral geometry in Minkowski spaces

    No full text

    Sets of constant relative width and constant relative brightness

    Full text link

    Geometric Inequalities for Plane Convex Bodies

    Get PDF
    In what follows we shall mean by a plane convex body K a compact convex subset of the Euclidean plane having nonempty interior. We shall denote by h (K, θ) the supporting function of K restricted to the unit circle. This measures the signed distances from the origin to the supporting line of K with outward normal (cos θ, sin θ). The right hand and left hand derivatives of h (K, θ) exist everywhere and are equal except on a countable set.</jats:p
    corecore