1 research outputs found

    Oblique frozen modes in periodic layered media

    Full text link
    We study the classical scattering problem of a plane electromagnetic wave incident on the surface of semi-infinite periodic stratified media incorporating anisotropic dielectric layers with special oblique orientation of the anisotropy axes. We demonstrate that an obliquely incident light, upon entering the periodic slab, gets converted into an abnormal grazing mode with huge amplitude and zero normal component of the group velocity. This mode cannot be represented as a superposition of extended and evanescent contributions. Instead, it is related to a general (non-Bloch) Floquet eigenmode with the amplitude diverging linearly with the distance from the slab boundary. Remarkably, the slab reflectivity in such a situation can be very low, which means an almost 100% conversion of the incident light into the axially frozen mode with the electromagnetic energy density exceeding that of the incident wave by several orders of magnitude. The effect can be realized at any desirable frequency, including optical and UV frequency range. The only essential physical requirement is the presence of dielectric layers with proper oblique orientation of the anisotropy axes. Some practical aspects of this phenomenon are considered.Comment: text and 9 figure
    corecore