130 research outputs found
A Simple Model of Heat Distribution at Various Rayleigh Number in Silicon Elastomer
In order to investigate the two-dimensional flow of a non-Newtonian fluid, such as an elastomer liquid over a cylinder, a simplified model is applied. The analysis is carried out to study the thermophysical properties of the melt elastomer flow with Prandtl variable in the presence of internal heat generation. The temperature-dependent physical properties such as velocity, contour temperature, surface temperature as a function of contour velocity, and pressure are considered and discussed. Moreover, the exchange of energy from the surface to the fluids is examined through the variation in the Rayleigh number
Cytocompatibility of Caffeic Acid-Silica Hybrid Materials on NIH-3T3 Fibroblast Cells
The hydroxycinnamoyl compound caffeic acid (CA), broadly occurring in plants, is receiving special attention in materials science thanks to its antioxidant, anti-inflammatory, and antimicrobial activities that make it promising for application use in various sectors. In this context, CA–based peptide biomaterials are recently developed as eco-friendly and multifunctional free radical scavengers useable in a wide range of consumer manufacture, ranging from cosmetics to household products, as well as clinical applications, including imaging, drug delivery, and disinfection. Furthermore, a water-soluble chitosan-caffeic acid conjugate, effective in delaying lipid oxidation, is also synthetized. Herein, exploiting sol-gel route versatility, CA/silica materials are synthetized. Hybrids, chemically characterized mainly through spectroscopic techniques, varied in their relative CA content, which represented 5%, 10%, 15%, or 20% of materials’ weight. The synthetized materials are able to elicit anti-radical properties. The CA amount appeared to be determinant in anti-radical activity, as well as in biocompatibility assessment. To this latter purpose, mouse embryonic fibroblast cell line NIH-3T3 cells are utilized and directly exposed to hybrid materials. Redox mitochondrial activity is evaluated by means of the MTT test, whose results are in accordance with the materials’ biocompatibility
Synthesis of Glass Nanocomposite Powders: Structure, Thermal, and Antibacterial Study
The aim of the present study is to synthesize CaO•GeO2 glass nanocomposite powders. The samples are prepared at 1450°C, and to investigate the structure of the samples, differential thermal analysis (DTA), X-ray diffraction, and Fourier Transform Infrared (FTIR) spectroscopy are used. The main crystallizing phase is found to be CaGe2O5 crystals. Furthermore, the potential antibacterial properties of the materials towards the Gram-negative bacteria, Escherichia coli, are preliminarily studied
3D GRID-based pharmacophore and Metadynamics approaches for the rational design of N-Methyl β-sheet breaker peptides as inhibitors of the Alzheimer's Aβ-amyloid fibrillogenesis
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the loss of the cognitive functions and dementia. Several scientific evidences report that a central role in the pathogenesis of AD is played by the brain deposition of insoluble aggregates of β-amyloid protein (Aβ) proteins, thus causing neuronal cell death [1]. For this reason, one of the promising approach is to inhibit the aggregation of Aβ peptides. Because Aβ is self-assembling, one possible strategy to prevent this process is to use short peptide fragments homologous to the full-length wild-type Aβ protein. From this consideration, several short synthetic peptides were designed as beta-sheet breakers (BSB) [2]. In particular, the pentapetide Ac-LPFFD-NH2 (iAβ5p) exhibited a certain capability to inhibit Aβ fibrillogenesis [3]. iAβ5p analogs [4] were, then, designed by introducing N-Methylation at the amide bond nitrogen were also promising BSB. Here, we describe the methodological approach, which combines 3D GRID-based pharmacophore peptide screening with Well-Tempered Metadynamics simulations aimed to the discovery of novel N-Methylated BSB. This approach led us to identify two promising, cell permeable, N-Methylated peptides that were further evaluated for their BSB properties showing a significant improvement of the fibrillogenesis inhibition with respect to the lead iAβ5p
Recommended from our members
Intracellular trafficking, localization, and mobilization of platelet-borne thiol isomerases
OBJECTIVE:
Thiol isomerases facilitate protein folding in the endoplasmic reticulum, and several of these enzymes, including protein disulfide isomerase and ERp57, are mobilized to the surface of activated platelets, where they influence platelet aggregation, blood coagulation, and thrombus formation. In this study, we examined the synthesis and trafficking of thiol isomerases in megakaryocytes, determined their subcellular localization in platelets, and identified the cellular events responsible for their movement to the platelet surface on activation.
APPROACH AND RESULTS:
Immunofluorescence microscopy imaging was used to localize protein disulfide isomerase and ERp57 in murine and human megakaryocytes at various developmental stages. Immunofluorescence microscopy and subcellular fractionation analysis were used to localize these proteins in platelets to a compartment distinct from known secretory vesicles that overlaps with an inner cell-surface membrane region defined by the endoplasmic/sarcoplasmic reticulum proteins calnexin and sarco/endoplasmic reticulum calcium ATPase 3. Immunofluorescence microscopy and flow cytometry were used to monitor thiol isomerase mobilization in activated platelets in the presence and absence of actin polymerization (inhibited by latrunculin) and in the presence or absence of membrane fusion mediated by Munc13-4 (absent in platelets from Unc13dJinx mice).
CONCLUSIONS:
Platelet-borne thiol isomerases are trafficked independently of secretory granule contents in megakaryocytes and become concentrated in a subcellular compartment near the inner surface of the platelet outer membrane corresponding to the sarco/endoplasmic reticulum of these cells. Thiol isomerases are mobilized to the surface of activated platelets via a process that requires actin polymerization but not soluble N-ethylmaleimide-sensitive fusion protein attachment receptor/Munc13-4-dependent vesicular-plasma membrane fusion
Proteins of Leishmania (Viannia) shawi confer protection associated with Th1 immune response and memory generation
<p>Abstract</p> <p>Background</p> <p><it>Leishmania (Viannia) shawi </it>parasite was first characterized in 1989. Recently the protective effects of soluble leishmanial antigen (SLA) from <it>L. (V.) shawi </it>promastigotes were demonstrated using BALB/c mice, the susceptibility model for this parasite. In order to identify protective fractions, SLA was fractionated by reverse phase HPLC and five antigenic fractions were obtained.</p> <p>Methods</p> <p>F1 fraction was purified from L. (V.) shawi parasite extract by reverse phase HPLC. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 μg of F1. After 1 and 16 weeks of last immunization, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 2 months, those same mice were sacrificed and parasite burden, cellular and humoral immune responses were evaluated.</p> <p>Results</p> <p>The F1 fraction induced a high degree of protection associated with an increase in IFN-γ, a decrease in IL-4, increased cell proliferation and activation of CD8<sup>+</sup>T lymphocytes. Long-term protection was acquired in F1-immunized mice, associated with increased CD4<sup>+ </sup>central memory T lymphocytes and activation of both CD4<sup>+ </sup>and CD8<sup>+ </sup>T cells. In addition, F1-immunized groups showed an increase in IgG2a levels.</p> <p>Conclusions</p> <p>The inductor capability of antigens to generate memory lymphocytes that can proliferate and secrete beneficial cytokines upon infection could be an important factor in the development of vaccine candidates against American Tegumentary Leishmaniasis.</p
ZBTB12 DNA methylation is associated with coagulation- and inflammation-related blood cell parameters: findings from the Moli-family cohort.
Background Zinc finger and BTB domain-containing protein 12 (ZBTB12) is a predicted transcription factor with potential role in hematopoietic development. Recent evidence linked low methylation level of ZBTB12 exon1 to myocardial infarction (MI) risk. However, the role of ZBTB12 in the pathogenesis of MI and cardiovascular disease in general is not yet clarified. We investigated the relation between ZBTB12 methylation and several blood parameters related to cardio-cerebrovascular risk in an Italian family-based cohort. Results ZBTB12 methylation was analyzed on white blood cells from the Moli-family cohort using the Sequenom EpiTYPER MassARRAY (Agena). A total of 13 CpG Sequenom units were analyzed in the small CpG island located in the only translated ZBTB12 exon. Principal component analysis (PCA) was performed to identify groups of CpG units with similar methylation estimates. Linear mixed effect regressions showed a positive association between methylation of ZBTB12 Factor 2 (including CpG units 8, 9–10, 16, 21) and TNF-ɑ stimulated procoagulant activity, a measure of procoagulant and inflammatory potential of blood cells. In addition, we also found a negative association between methylation of ZBTB12 Factor 1 (mainly characterized by CpG units 1, 3–4, 5, 11, and 26) and white blood cell and granulocyte counts. An in silico prediction analysis identified granulopoiesis- and hematopoiesis-specific transcription factors to potentially bind DNA sequences encompassing CpG1, CpG3–4, and CpG11. Conclusions ZBTB12 hypomethylation is linked to shorter TNF-ɑ stimulated whole blood coagulation time and increased WBC and granulocyte counts, further elucidating the possible link between ZBTB12 methylation and cardiovascular disease risk
Identification of a homozygous recessive variant in PTGS1 resulting in a congenital aspirin-like defect in platelet function
We have identified a rare missense variant on chromosome 9, position 125145990 (GRCh37), in exon 8 in PTGS1 (the gene encoding cyclo-oxygenase 1, COX-1, the target of anti-thrombotic aspirin therapy). We report that in the homozygous state within a large consanguineous family this variant is associated with a bleeding phenotype and alterations in platelet reactivity and eicosanoid production. Western blotting and confocal imaging demonstrated that COX-1 was absent in the platelets of three family members homozygous for the PTGS1 variant but present in their leukocytes. Platelet reactivity, as assessed by aggregometry, lumi-aggregometry and flow cytometry, was impaired in homozygous family members, as were platelet adhesion and spreading. The productions of COX-derived eicosanoids by stimulated platelets were greatly reduced but there were no changes in the levels of urinary metabolites of COX-derived eicosanoids. The proband exhibited additional defects in platelet aggregation and spreading which may explain why her bleeding phenotype was slightly more severe than those of other homozygous affected relatives. This is the first demonstration in humans of the specific loss of platelet COX-1 activity and provides insight into its consequences for platelet function and eicosanoid metabolism. Notably despite the absence of thromboxane A2 (TXA2) formation by platelets, urinary TXA2 metabolites were in the normal range indicating these cannot be assumed as markers of in vivo platelet function. Results from this study are important benchmarks for the effects of aspirin upon platelet COX-1, platelet function and eicosanoid production as they define selective platelet COX-1 ablation within humans
- …