12,016 research outputs found

    A Transactional Analysis of Interaction Free Measurements

    Full text link
    The transactional interpretation of quantum mechanics is applied to the "interaction-free" measurement scenario of Elitzur and Vaidman and to the Quantum Zeno Effect version of the measurement scenario by Kwiat, et al. It is shown that the non-classical information provided by the measurement scheme is supplied by the probing of the intervening object by incomplete offer and confirmation waves that do not form complete transactions or lead to real interactions.Comment: Accepted for publication in Foundations of Physics Letter

    Quantifying Absorption in the Transactional Interpretation

    Full text link
    The Transactional Interpretation offers a solution to the measurement problem by identifying specific physical conditions precipitating the non-unitary `measurement transition' of von Neumann. Specifically, the transition occurs as a result of absorber response (a process lacking in the standard approach to the theory). The purpose of this Letter is to make clear that, despite recent claims to the contrary, the concepts of `absorber' and `absorber response,' as well as the process of absorption, are physically and quantitatively well-defined in the transactional picture. In addition, the Born Rule is explicitly derived for radiative processes.Comment: Final version, accepted in International Journal of Quantum Foundation

    Entanglement area law from specific heat capacity

    Get PDF
    We study the scaling of entanglement in low-energy states of quantum many-body models on lattices of arbitrary dimensions. We allow for unbounded Hamiltonians such that systems with bosonic degrees of freedom are included. We show that if at low enough temperatures the specific heat capacity of the model decays exponentially with inverse temperature, the entanglement in every low-energy state satisfies an area law (with a logarithmic correction). This behaviour of the heat capacity is typically observed in gapped systems. Assuming merely that the low-temperature specific heat decays polynomially with temperature, we find a subvolume scaling of entanglement. Our results give experimentally verifiable conditions for area laws, show that they are a generic property of low-energy states of matter, and, to the best of our knowledge, constitute the first proof of an area law for unbounded Hamiltonians beyond those that are integrable.Comment: v3 now featuring bosonic system

    Equivalence of Statistical Mechanical Ensembles for Non-Critical Quantum Systems

    Get PDF
    We consider the problem of whether the canonical and microcanonical ensembles are locally equivalent for short-ranged quantum Hamiltonians of NN spins arranged on a dd-dimensional lattices. For any temperature for which the system has a finite correlation length, we prove that the canonical and microcanonical state are approximately equal on regions containing up to O(N1/(d+1))O(N^{1/(d+1)}) spins. The proof rests on a variant of the Berry--Esseen theorem for quantum lattice systems and ideas from quantum information theory

    Thermalization and Return to Equilibrium on Finite Quantum Lattice Systems

    Get PDF
    Thermal states are the bedrock of statistical physics. Nevertheless, when and how they actually arise in closed quantum systems is not fully understood. We consider this question for systems with local Hamiltonians on finite quantum lattices. In a first step, we show that states with exponentially decaying correlations equilibrate after a quantum quench. Then we show that the equilibrium state is locally equivalent to a thermal state, provided that the free energy of the equilibrium state is sufficiently small and the thermal state has exponentially decaying correlations. As an application, we look at a related important question: When are thermal states stable against noise? In other words, if we locally disturb a closed quantum system in a thermal state, will it return to thermal equilibrium? We rigorously show that this occurs when the correlations in the thermal state are exponentially decaying. All our results come with finite-size bounds, which are crucial for the growing field of quantum thermodynamics and other physical applications.Comment: 8 pages (5 for main text and 3 for appendices); v2 is essentially the published versio
    corecore