230 research outputs found
Initial-boundary value problems for conservation laws with source terms and the Degasperis-Procesi equation
We consider conservation laws with source terms in a bounded domain with
Dirichlet boundary conditions. We first prove the existence of a strong trace
at the boundary in order to provide a simple formulation of the entropy
boundary condition. Equipped with this formulation, we go on to establish the
well-posedness of entropy solutions to the initial-boundary value problem. The
proof utilizes the kinetic formulation and the compensated compactness method.
Finally, we make use of these results to demonstrate the well-posedness in a
class of discontinuous solutions to the initial-boundary value problem for the
Degasperis-Procesi shallow water equation, which is a third order nonlinear
dispersive equation that can be rewritten in the form of a nonlinear
conservation law with a nonlocal source term.Comment: 24 page
- …