1,348 research outputs found
Hilbert space frames containing a Riesz basis and Banach spaces which have no subspace isomorphic to
We prove that a Hilbert space frame \fti contains a Riesz basis if every
subfamily \ftj , J \subseteq I , is a frame for its closed span. Secondly we
give a new characterization of Banach spaces which do not have any subspace
isomorphic to . This result immediately leads to an improvement of a
recent theorem of Holub concerning frames consisting of a Riesz basis plus
finitely many elements
- …