3,723 research outputs found
A global-scale analysis of the sharing economy model â an AirBnB case study
Abstract: The sharing economy model has changed the way in which people engage in a variety of activities, including travelling, trading, working, and lending/borrowing money. Several studies exist that aim to understand, quantify and model such phenomenon, but most such studies are geographically focused on countries in the Western World. Knowledge about the penetration and adoption of this novel market model in non-Western countries is much more limited, and almost completely lacking when it comes to emerging markets, where it was touted to bring the biggest benefits and be a game changer to uplift people economically. To close the gap, we chose Airbnb as an example of sharing economy model with worldwide market penetration, and performed a large-scale quantitative study of its penetration and adoption in seven cities in Asia, five cities in Latin America. We compared findings against seven cities in the Western World, and observed patterns to be similar across all locales, with two notable exceptions: the geographic penetration of such services, and the experience that guests travelling to such destinations shared in their reviews
Exploring maintenance practices in crowd-mapping
Crowd-mapping is a form of collaborative work that empowers users to gather and share geographic knowledge. OpenStreetMap is one of the most successful examples of such paradigm, where the goal of building a global map of the world is collectively performed by over 2M contributors. Despite geographic information being intrinsically evolving, little research has so far gone into analysing maintenance practices in these domains. In this paper, we perform a preliminary exploration to quantitatively capture maintenance dynamics in geographic crowd-sourced datasets, in terms of: the extent to which different maintenance actions are taking place, the type of spatial information that is being maintained, and who engages in these practices. We apply this method to 117 countries in OSM, over one year of mapping activity. Our findings reveal that, although maintenance practices vary substantially from country to country in terms of how widespread they are, strong commonalities exist in terms of what metadata is being maintained and by whom
City form and well-being: what makes London neighborhoods good places to live?
What is the relationship between urban form and citizensâ well-being? In this paper, we propose a quantitative approach to help answer this question, inspired by theories developed within the fields of architecture and population health. The method extracts a rich set of metrics of urban form and well-being from openly accessible datasets. Using linear regression analysis, we identify a model which can explain 30% of the variance of well-being when applied to Greater London, UK. Outcomes of this research can inform the discussion on how to design cities which foster the wellbeing of their residents
A scalable method to quantify the relationship between urban form and socio-economic indexes
The world is undergoing a process of fast and unprecedented urbanisation. It is reported that by 2050 66% of the entire world population will live in cities. Although this phenomenon is generally considered beneficial, it is also causing housing crises and more inequality worldwide. In the past, the relationship between design features of cities and socio-economic levels of their residents has been investigated using both qualitative and quantitative methods. However, both sets of works had significant limitations as the former lacked generalizability and replicability, while the latter had a too narrow focus, since they tended to analyse single aspects of the urban environment rather than a more complex set of metrics. This might have been caused by the lack of data availability. Nowadays, though, larger and freely accessible repositories of data can be used for this purpose. In this paper, we propose a scalable method that delves deeper into the relationship between features of cities and socio-economics. The method uses openly accessible datasets to extract multiple metrics of urban form and then models the relationship between urban form and socio-economic levels through spatial regression analysis. We applied this method to the six major conurbations (i.e., London, Manchester, Birmingham, Liverpool, Leeds, and Newcastle) of the United Kingdom (UK) and found that urban form could explain up to 70% of the variance of the English official socio-economic index, the Index of Multiple Deprivation (IMD). In particular, results suggest that more deprived UK neighbourhoods are characterised by higher population density, larger portions of unbuilt land, more dead-end roads, and a more regular street pattern
Social contribution settings and newcomer retention in humanitarian crowd mapping
Organisers of crowd mapping initiatives seek to identify practices that foster an active contributor community. Theory suggests that social contribution settings can provide important support functions for newcomers, yet to date there are no empirical studies of such an effect. We present the first study that evaluates the relationship between colocated practice and newcomer retention in a crowd mapping community, involving hundreds of first-time participants. We find that certain settings are associated with a significant increase in newcomer retention, as are regular meetings, and a greater mix of experiences among attendees. Factors relating to the setting such as food breaks and technical disruptions have comparatively little impact. We posit that successful social contribution settings serve as an attractor: they provide opportunities to meet enthusiastic contributors, and can capture prospective contributors who have a latent interest in the practice
Workshop on evaluating personal search
The first ECIR workshop on Evaluating Personal Search was
held on 18th April 2011 in Dublin, Ireland. The workshop
consisted of 6 oral paper presentations and several discussion sessions. This report presents an overview of the scope and contents of the workshop and outlines the major outcomes
Social interactions or business transactions? What customer reviews disclose about Airbnb marketplace
Airbnb is one of the most successful examples of sharing economy marketplaces. With rapid and global market penetration, understanding its attractiveness and evolving growth opportunities is key to plan business decision making. There is an ongoing debate, for example, about whether Airbnb is a hospitality service that fosters social exchanges between hosts and guests, as the sharing economy manifesto originally stated, or whether it is (or is evolving into being) a purely business transaction platform, the way hotels have traditionally operated. To answer these questions, we propose a novel market analysis approach that exploits customersâ reviews. Key to the approach is a method that combines thematic analysis and machine learning to inductively develop a custom dictionary for guestsâ reviews. Based on this dictionary, we then use quantitative linguistic analysis on a corpus of 3.2 million reviews collected in 6 different cities, and illustrate how to answer a variety of market research questions, at fine levels of temporal, thematic, user and spatial granularity, such as (i) how the business vs social dichotomy is evolving over the years, (ii) what exact words within such top-level categories are evolving, (iii) whether such trends vary across different user segments and (iv) in different neighbourhoods
- âŠ