2,140 research outputs found
Acoustic motion estimation and control for an unmanned underwater vehicle in a structured environment
The problem of identification and navigation, guidance and control in unmanned underwater vehicles (UUVs) is addressed in this paper. A task-function-based guidance system and an acoustic motion estimation module have been integrated with a conventional UUV autopilot within a two-layered hierarchical architecture for closed-loop control. Basic techniques to estimate the robot dynamics using the sensors mounted on the vehicle have been investigated. The proposed identification techniques and navigation, guidance and control (NGC) system have been tested on Roby2, a UUV developed at the Istituto Automazione Navale of the Italian C.N.R. The experimental set-up, as well as the modalities and results, are discussed.Programma Nazionale di Recerche in Antartide (PNRA
Performance of a large limited streamer tube cell in drift mode
The performance of a large (3x3 ) streamer tube cell in drift mode is
shown. The detector space resolution has been studied using cosmic muons
crossing an high precision silicon telescope. The experimental results are
compared with a GARFIELD simulation.Comment: 18 pages, 7 figures. Accepted by Nucl. Instr. and Methods
Monitoring of sea-ice-atmosphere interface in the proximity of arctic tidewater glaciers: The contribution of marine robotics
The Svalbard archipelago, with its partially closed waters influenced by both oceanic conditions and large tidal glaciers, represents a prime target for understanding the effects of ongoing climate change on glaciers, oceans, and ecosystems. An understanding of the role played by tidewater glaciers in marine primary production is still affected by a lack of data from close proximity to glacier fronts, to which, for safety reasons, manned surface vessels cannot get too close. In this context, autonomous marine vehicles can play a key role in collecting high quality data in dangerous interface areas. In particular, the contribution given by light, portable, and modular marine robots is discussed in this paper. The state-of-the-art of technology and of operating procedures is established on the basis of the experience gained in campaigns carried out by Italian National Research Council (CNR) robotic researchers in Ny-Alesund, Svalbard Islands, in 2015, 2017, and 2018 respectively. The aim was to demonstrate the capability of an Unmanned Semi-Submersible Vehicle (USSV): (i) To collect water samples in contact with the front of a tidewater glacier; (ii) to work in cooperation with Unmanned Aerial Vehicles (UAV) for sea surface and air column characterisation in the proximity of the fronts of the glaciers; and (iii) to perform, when equipped with suitable tools and instruments, repetitive sampling of water surface as well as profiling the parameters of the water and air column close to the fronts of the tidewater glaciers. The article also reports the issues encountered in navigating in the middle of bergy bits and growlers as well as the problems faced in using some sensors at high latitudes
Atmospheric fluctuations below 0.1 Hz during drift-scan solar diameter measurements
Measurements of the power spectrum of the seeing in the range 0.001-1 Hz have
been performed in order to understand the criticity of the transits' method for
solar diameter monitoring.Comment: 3 pages, 3 figures, proc. of the Fourth French-Chinese meeting on
Solar Physics Understanding Solar Activity: Advances and Challenges, 15 - 18
November, 2011 Nice, Franc
Design and construction of a modular pump-jet thruster for autonomous surface vehicle operations in extremely shallow water
open5noThis paper describes a customized thruster for Autonomous Surface Vehicles (ASV). The thruster is a Pump-Jet Module (PJM), which has been expressly designed, modeled, constructed, and tested for small-/medium-sized ASVs that perform environmental monitoring in extremely shallow waters such as wetlands (rivers, lakes, swamps, marshes), where water depth is only a few centimeters. The PJM is a fully-electric propulsion unit with a 360-degree continuous steering capability. Its main advantage is that the unit is flush with the flat bottom of the vehicle. This makes the PJM suitable for operation in extremely shallow waters because the risk of damaging the thrusting unit in case of grounding is very limited. The PJM was produced using innovative materials, and the hydraulic components were all constructed using a 3D printer.openOdetti A.; Altosole M.; Bruzzone G.; Caccia M.; Viviani M.Odetti, Angelo; Altosole, M.; Bruzzone, G.; Caccia, M.; Viviani, M
Tropical seagrass-associated macroalgae distributions and trends relative to water quality
Tropical coastal marine ecosystems including mangroves, seagrass beds and coral reef communities are undergoing intense degradation in response to natural and human disturbances, therefore, understanding the causes and mechanisms present challenges for scientist and managers. In order to protect our marine resources, determining the effects of nutrient loads on these coastal systems has become a key management goal. Data from monitoring programs were used to detect trends of macroalgae abundances and develop correlations with nutrient availability, as well as forecast potential responses of the communities monitored. Using eight years of data (1996–2003) from complementary but independent monitoring programs in seagrass beds and water quality of the Florida Keys National Marine Sanctuary (FKNMS), we: (1) described the distribution and abundance of macroalgae groups; (2) analyzed the status and spatiotemporal trends of macroalgae groups; and (3) explored the connection between water quality and the macroalgae distribution in the FKNMS. In the seagrass beds of the FKNMS calcareous green algae were the dominant macroalgae group followed by the red group; brown and calcareous red algae were present but in lower abundance. Spatiotemporal patterns of the macroalgae groups were analyzed with a non-linear regression model of the abundance data. For the period of record, all macroalgae groups increased in abundance (Abi) at most sites, with calcareous green algae increasing the most. Calcareous green algae and red algae exhibited seasonal pattern with peak abundances (Φi) mainly in summer for calcareous green and mainly in winter for red. Macroalgae Abi and long-term trend (mi) were correlated in a distinctive way with water quality parameters. Both the Abi and mi of calcareous green algae had positive correlations with NO3−, NO2−, total nitrogen (TN) and total organic carbon (TOC). Red algae Abi had a positive correlation with NO2−, TN, total phosphorus and TOC, and the mi in red algae was positively correlated with N:P. In contrast brown and calcareous red algae Abi had negative correlations with N:P. These results suggest that calcareous green algae and red algae are responding mainly to increases in N availability, a process that is happening in inshore sites. A combination of spatially variable factors such as local current patterns, nutrient sources, and habitat characteristics result in a complex array of the macroalgae community in the seagrass beds of the FKNMS
A new tow maneuver of a damaged boat through a swarm of autonomous sea drones
Given the huge rising interest in autonomous drone swarms to be employed in actual marine applications, the present paper explores the possibility to recover a distressed vessel by means of the other agents belonging to the swarm itself. Suitable approaches and control strategies are developed and tested to find the highest performance algorithms. Different rules are exploited to obtain a correct behaviour in terms of swarm interaction, namely collective and coordinated, and individual. An innovative feedback control strategy is adopted and demonstrated its effectiveness. Extensive simulation runs have been conducted, whose results validate the approach
Transgenic plants expressing immunosuppressive dsRNA improve entomopathogen efficacy against Spodoptera littoralis larvae
Transgenic plants that express double-stranded RNA (dsRNA) targeting vital insect genes have recently emerged as a valuable new tool for pest control. In this study, tobacco plants were transformed to produce dsRNA targeting Sl 102 gene that is involved in the immune response of Spodoptera littoralis larvae, a serious lepidopteran pest of several crops. Experimental larvae reared on transgenic tobacco lines showed (1) a strongly reduced level of Sl 102 transcripts, which was positively associated with food consumption; (2) a substantial impairment of the encapsulation response mediated by hemocytes; and (3) a marked increase in the susceptibility to Xentari™, a Bacillus thuringiensis-based insecticide. Importantly, this approach may allow a reduction in the doses of B. thuringiensis used for field applications and enhance its killing activity on mature larvae. The results obtained thus support the use of immunosuppressive RNAi plants to enhance the performance of microbial insecticides on lepidopteran larvae
High resolution pixel detectors for e+e- linear colliders
The physics goals at the future e+e- linear collider require high performance
vertexing and impact parameter resolution. Two possible technologies for the
vertex detector of an experimental apparatus are outlined in the paper: an
evolution of the Hybrid Pixel Sensors already used in high energy physics
experiments and a new detector concept based on the monolithic CMOS sensors.Comment: 8 pages, to appear on the Proceedings of the International Workshop
on Linear Colliders LCWS99, Sitges (Spain), April 28 - May 5, 199
- …