222,574 research outputs found

    Random Isotropic Structures and Possible Glass Transitions in Diblock Copolymer Melts

    Get PDF
    We study the microstructural glass transitions in diblock-copolymer melts using a thermodynamic replica approach. Our approach performs an expansion in terms of the natural smallness parameter -- the inverse of the scaled degree of polymerization, which allows us to systematically study the approach to mean-field behavior as the degree of polymerization increases. We find that in the limit of infinite long polymer chains, both the onset of glassiness and the vitrification transition (Kauzmann temperature) collapse to the mean-field spinodal, suggesting that the spinodal can be regarded as the mean-field signature for glass transitions in this class of systems. We also study the order-disorder transitions (ODT) within the same theoretical framework; in particular, we include the leading-order fluctuation corrections due to the cubic interaction in the coarse-grained Hamiltonian, which has been ignored in previous works on the ODT in block copolymers. We find that the cubic term stabilizes both the ordered (body-centered-cubic) phase and the glassy state relative to the disordered phase. While in melts of symmetric copolymers the glass transition always occurs after the order-disorder transition (below the ODT temperature), for asymmetric copolymers, it is possible that the glass transition precedes the ordering transition.Comment: An error corrected in the referenc

    Interacting Individuals Leading to Zipf's Law

    Full text link
    We present a general approach to explain the Zipf's law of city distribution. If the simplest interaction (pairwise) is assumed, individuals tend to form cities in agreement with the well-known statisticsComment: 4 pages 2 figure

    Phase Diffusion in Single-Walled Carbon Nanotube Josephson Transistors

    Get PDF
    We investigate electronic transport in Josephson junctions formed by single-walled carbon nanotubes coupled to superconducting electrodes. We observe enhanced zero-bias conductance (up to 10e^2/h) and pronounced sub-harmonic gap structures in differential conductance, which arise from the multiple Andreev reflections at superconductor/nanotube interfaces. The voltage-current characteristics of these junctions display abrupt switching from the supercurrent branch to resistive branch, with a gate-tunable switching current ranging from 50 pA to 2.3 nA. The finite resistance observed on the supercurrent branch and the magnitude of the switching current are in good agreement with calculation based on the model of classical phase diffusion
    • …
    corecore