265,402 research outputs found
Random Isotropic Structures and Possible Glass Transitions in Diblock Copolymer Melts
We study the microstructural glass transitions in diblock-copolymer melts
using a thermodynamic replica approach. Our approach performs an expansion in
terms of the natural smallness parameter -- the inverse of the scaled degree of
polymerization, which allows us to systematically study the approach to
mean-field behavior as the degree of polymerization increases. We find that in
the limit of infinite long polymer chains, both the onset of glassiness and the
vitrification transition (Kauzmann temperature) collapse to the mean-field
spinodal, suggesting that the spinodal can be regarded as the mean-field
signature for glass transitions in this class of systems. We also study the
order-disorder transitions (ODT) within the same theoretical framework; in
particular, we include the leading-order fluctuation corrections due to the
cubic interaction in the coarse-grained Hamiltonian, which has been ignored in
previous works on the ODT in block copolymers. We find that the cubic term
stabilizes both the ordered (body-centered-cubic) phase and the glassy state
relative to the disordered phase. While in melts of symmetric copolymers the
glass transition always occurs after the order-disorder transition (below the
ODT temperature), for asymmetric copolymers, it is possible that the glass
transition precedes the ordering transition.Comment: An error corrected in the referenc
Interacting Individuals Leading to Zipf's Law
We present a general approach to explain the Zipf's law of city distribution.
If the simplest interaction (pairwise) is assumed, individuals tend to form
cities in agreement with the well-known statisticsComment: 4 pages 2 figure
Phase Diffusion in Single-Walled Carbon Nanotube Josephson Transistors
We investigate electronic transport in Josephson junctions formed by
single-walled carbon nanotubes coupled to superconducting electrodes. We
observe enhanced zero-bias conductance (up to 10e^2/h) and pronounced
sub-harmonic gap structures in differential conductance, which arise from the
multiple Andreev reflections at superconductor/nanotube interfaces. The
voltage-current characteristics of these junctions display abrupt switching
from the supercurrent branch to resistive branch, with a gate-tunable switching
current ranging from 50 pA to 2.3 nA. The finite resistance observed on the
supercurrent branch and the magnitude of the switching current are in good
agreement with calculation based on the model of classical phase diffusion
The heavy-element abundances of AGB stars and the angular momentum conservation model of wind accretion for barium stars
Adpoting new s-process nucleosynthesis scenario and branch s-process path, we
calculate the heavy-element abundances and C/O ratio of solar metallicity
3M_sun TP-AGB stars. The evolutionary sequence from M to S to C stars of AGB
stars is explained naturally by the calculated results. Then combining the
angular momentum conservation model of wind accretion with the heavy-element
abundances on the surface of TP-AGB stars, we calculate the heavy-element
overabundances of barium stars via successive pulsed accreting and mixing. Our
results support that the barium stars with longer orbital period, P>1600 days,
form through wind accretion scenario.Comment: 14 pages, LaTex, 17 PS figures included, accepted for publication in
A &
- …