1,327 research outputs found
Polarization-dependence of anomalous scattering in brominated DNA and RNA molecules, and importance of crystal orientation in single- and multiple-wavelength anomalous diffraction phasing
In this paper the anisotropy of anomalous scattering at the Br K-absorption edge in brominated nucleotides is investigated, and it is shown that this effect can give rise to a marked directional dependence of the anomalous signal strength in X-ray diffraction data. This implies that choosing the correct orientation for crystals of such molecules can be a crucial determinant of success or failure when using single- and multiple-wavelength anomalous diffraction (SAD or MAD) methods to solve their structure. In particular, polarized absorption spectra on an oriented crystal of a brominated DNA molecule were measured, and were used to determine the orientation that yields a maximum anomalous signal in the diffraction data. Out of several SAD data sets, only those collected at or near that optimal orientation allowed interpretable electron density maps to be obtained. The findings of this study have implications for instrumental choices in experimental stations at synchrotron beamlines, as well as for the development of data collection strategy programs
Effects of methylprednisolone on exercise-induced increases of plasma levels of polymorphonuclear elastase and myeloperoxidase in man. Preliminary results
The aim of the present study was to verify whether a single oral dose of methylprednisolone could modulate the exercise-induced release of polymorphonuclear neutrophil (PMN) elastase and myeloperoxidase. Four healthy, male subjects were submitted to a 20 min downhill run (−20%) at 60% VO2 max, 3 h after oral absorption of a placebo or a single dose of 32 mg methylprednisolone. A marked neutrophilia (+103% of basal PMN count; p < 0.02) was observed 3 h after methylprednisolone ingestion. During both exercise trials, placebo and methylprednisolone, PMN counts were increased by 46% and 19% (p < 0.05), respectively. The running test caused marked and significant (p < 0.05) increases in plasma myeloperoxidase concentration (MPO). The magnitude of MPO changes was the same in the two trials (+110%). Exercise also resulted in significant changes in plasma elastase concentration (EL) in both experimental conditions (placebo: +104%, p < 0.05; methylprednisolone: +338%, p < 0.005). Plasma elastase levels reached at the end of exercise on methylprednisolone were significantly higher than after placebo (p < 0.05). A significant relationship was found between EL and PMN in methylprednisolone trial only (r = 0.72; l0 < 0.005). These results showed that the transient exercise-induced release of elastase and myeloperoxidase were not decreased by methylprednisolone
Inflammatory response to strenuous muscular exercise in man
Based on the humoral and cellular changes occurring during strenuous muscular work in humans, the concept of inflammatory response to exercise (IRE) is developed. The main indices of IRE consist of signs of an acute phase response, leucocytosis and leucocyte activation, release of inflammatory mediators, tissue damage and cellular infiltrates, production of free radicals, activation of complement, and coagulation and fibrinolytic pathways. Depending on exercise intensity and duration, it seems likely that muscle and/or associated connective tissue damage, contact system activation due to shear stress on endothelium and endotoxaemia could be the triggering mechanisms of IRE. Although this phenomenon can be considered in most cases as a physiological process associated with tissue repair, exaggerated IRE could have physiopathological consequences. On the other hand, the influence of several factors such as age, sex, training, hormonal status, nutrition, anti-inflammatory drugs, and the extent to which IRE could be a potential risk for subjects undergoing intense physical training require further study
Inactivation of α2-Macroglobulin by Activated Human Polymorphonuclear Leukocytes
The proteolytic activity of trypsin releases the dye Remazol
Brilliant Blue from its high molecular weight substrate, the skin
powder (Hide Powder Azure, Sigma), with an increase in absorbance at
595 nm. Active α2- macroglobulin (80 μg/ml) totally inhibits the
proteolytic activity of trypsin (14 μg/ml) by trapping this
protease. But after a 20 min incubation of α2-macroglobulin at 37°C
with 2 × 106 human polymorphonuclear leukocytes activated by
N-formyl-L-methionyl-L-leucyl-L-phenylalanine
(10−7 M) and cytochalasin B (10−8 M), 100% of trypsin
activity was recovered, indicating a total inactivation of
α2-macroglobuHn. Incubation with granulocyte myeloperoxidase also
inactivates α2-macroglobulin. Hypochlorous acid, a by-product of
myeloperoxidase activity, at a concentration of 10−7 M also
inactivates α2-macroglobulin, which indicates that an important
cause of α2-macroglobulin inactivation by activated
polymorphonuclear leukocytes could be the activity of myeloperoxidase
Piroxicam fails to reduce myocellular enzyme leakage and delayed onset muscle soreness induced by isokinetic eccentric exercise
To test the hypothesis that delayed onset muscular soreness (DOMS) following intense eccentric muscle contraction could be due to increased production of prostaglandin E2 (PGE2), ten healthy male subjects were studied. Using a double-blind randomized crossover design, each subject performed two isokinetic tests separated by a period of at least 6 weeks: once with placebo, and once with piroxicam (Feldene®). They were given one capsule containing either placebo or piroxicam (20 mg) per day for 6 days with initial doses given starting 3 days prior to isokinetic testing. Exercise consisted of eight stages of five maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases, on a Kin Trex device at 60°/s angular velocity. The subjective presence and intensity of DOMS were evaluated using a visual analogue scale immediately after, and 24 and 48 h after each test. The mean plasma concentration of PGE2 measured at rest and after exercise was significantly lower in the group treated with piroxicam (p < 0.05). However, statistical analysis (two-way ANOVA test) revealed that exercise did not cause any significant change of mean plasma PGE2 over time in either of the two groups. Eccentric work was followed by severe muscle pain in extensor and flexor muscle groups. Maximal soreness was noted 48 h postexercise. Serum creatine kinase activity and the serum concentration of myoglobin increased significantly, and reached peak values 48 h after exercise in both experimental conditions (p < 0.001). By paired t-test, it appeared that there were no significant differences in the serum levels of these two markers of muscle damage between the two groups at any time point. We conclude that: (1) oral administration of piroxicam fails to reduce muscle damage and DOMS caused by strenuous eccentric exercise; and (2) the hypothetical role of increased PGE2 production in eccentric exercise-induced muscle damage, DOMS, and reduced isokinetic performance is not substantiated by the present results
Comparing [CII], HI, and CO dynamics of nearby galaxies
The HI and CO components of the interstellar medium (ISM) are usually used to
derive the dynamical mass M_dyn of nearby galaxies. Both components become too
faint to be used as a tracer in observations of high-redshift galaxies. In
those cases, the 158 m line of atomic carbon [CII] may be the only way to
derive M_dyn. As the distribution and kinematics of the ISM tracer affects the
determination of M_dyn, it is important to quantify the relative distributions
of HI, CO and [CII]. HI and CO are well-characterised observationally, however,
for [CII] only very few measurements exist. Here we compare observations of CO,
HI, and [CII] emission of a sample of nearby galaxies, drawn from the HERACLES,
THINGS and KINGFISH surveys. We find that within R_25, the average [CII]
exponential radial profile is slightly shallower than that of the CO, but much
steeper than the HI distribution. This is also reflected in the integrated
spectrum ("global profile"), where the [CII] spectrum looks more like that of
the CO than that of the HI. For one galaxy, a spectrally resolved comparison of
integrated spectra was possible; other comparisons were limited by the
intrinsic line-widths of the galaxies and the coarse velocity resolution of the
[CII] data. Using high-spectral-resolution SOFIA [CII] data of a number of star
forming regions in two nearby galaxies, we find that their [CII] linewidths
agree better with those of the CO than the HI. As the radial extent of a given
ISM tracer is a key input in deriving M_dyn from spatially unresolved data, we
conclude that the relevant length-scale to use in determining M_dyn based on
[CII] data, is that of the well-characterised CO distribution. This length
scale is similar to that of the optical disk.Comment: Accepted for publication in the Astronomical Journa
Recommended from our members
Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation
The Planck High Frequency Instrument (HFI) surveyed the sky continuously from
August 2009 to January 2012. Its noise and sensitivity performance were
excellent, but the rate of cosmic ray impacts on the HFI detectors was
unexpectedly high. Furthermore, collisions of cosmic rays with the focal plane
produced transient signals in the data (glitches) with a wide range of
characteristics. A study of cosmic ray impacts on the HFI detector modules has
been undertaken to categorize and characterize the glitches, to correct the HFI
time-ordered data, and understand the residual effects on Planck maps and data
products. This paper presents an evaluation of the physical origins of glitches
observed by the HFI detectors. In order to better understand the glitches
observed by HFI in flight, several ground-based experiments were conducted with
flight-spare HFI bolometer modules. The experiments were conducted between 2010
and 2013 with HFI test bolometers in different configurations using varying
particles and impact energies. The bolometer modules were exposed to 23 MeV
protons from the Orsay IPN TANDEM accelerator, and to Am and Cm
-particle and Fe radioactive X-ray sources. The calibration data
from the HFI ground-based preflight tests were used to further characterize the
glitches and compare glitch rates with statistical expectations under
laboratory conditions. Test results provide strong evidence that the dominant
family of glitches observed in flight are due to cosmic ray absorption by the
silicon die substrate on which the HFI detectors reside. Glitch energy is
propagated to the thermistor by ballistic phonons, while there is also a
thermal diffusion contribution. The implications of these results for future
satellite missions, especially those in the far-infrared to sub-millimetre and
millimetre regions of the electromagnetic spectrum, are discussed.Comment: 11 pages, 13 figure
- …