134 research outputs found

    Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 2: Numerical experiment

    Get PDF
    The performance of a new statistical framework, developed for the evaluation of simulated temperature responses to climate forcings against temperature reconstructions derived from climate proxy data for the last millennium, is evaluated in a so-called pseudo-proxy experiment, where the true unobservable temperature is replaced with output data from a selected simulation with a climate model. Being an extension of the statistical model used in many detection and attribution (D&amp;A) studies, the framework under study involves two main types of statistical models, each of which is based on the concept of latent (unobservable) variables: confirmatory factor analysis (CFA) models and structural equation modelling (SEM) models. Within the present pseudo-proxy experiment, each statistical model was fitted to seven continental-scale regional data sets. In addition, their performance for each defined region was compared to the performance of the corresponding statistical model used in D&amp;A studies. The results of this experiment indicated that the SEM specification is the most appropriate one for describing the underlying latent structure of the simulated temperature data in question. The conclusions of the experiment have been confirmed in a cross-validation study, presuming the availability of several simulation data sets within each studied region. Since the experiment is performed only for zero noise level in the pseudo-proxy data, all statistical models, chosen as final regional models, await further investigation to thoroughly test their performance for realistic levels of added noise, similar to what is found in real proxy data for past temperature variations.</p

    Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 1: Theory

    Get PDF
    Evaluation of climate model simulations is a crucial task in climate research. Here, a new statistical framework is proposed for evaluation of simulated temperature responses to climate forcings against temperature reconstructions derived from climate proxy data for the last millennium. The framework includes two types of statistical models, each of which is based on the concept of latent (unobservable) variables: confirmatory factor analysis (CFA) models and structural equation modelling (SEM) models. Each statistical model presented is developed for use with data from a single region, which can be of any size. The ideas behind the framework arose partly from a statistical model used in many detection and attribution (D&amp;A) studies. Focusing on climatological characteristics of five specific forcings of natural and anthropogenic origin, the present work theoretically motivates an extension of the statistical model used in D&amp;A studies to CFA and SEM models, which allow, for example, for non-climatic noise in observational data without assuming the additivity of the forcing effects. The application of the ideas of CFA is exemplified in a small numerical study, whose aim was to check the assumptions typically placed on ensembles of climate model simulations when constructing mean sequences. The result of this study indicated that some ensembles for some regions may not satisfy the assumptions in question.</p

    Geographic origin and migration phenology of European red admirals (Vanessa atalanta) as revealed by stable isotopes.

    Get PDF
    BACKGROUND: Long-distance migration has evolved multiple times in different animal taxa. For insect migrants, the complete annual migration cycle covering several thousand kilometres, may be performed by several generations, each migrating part of the distance and reproducing. Different life-cycle stages and preferred orientation may thus, be found along the migration route. For migrating red admirals (Vanessa atalanta) it has been questioned if they reproduce in the most northern part of the range. Here we present migration phenology data from a two-year time series of migrating red admirals captured at Rybachy, Kaliningrad, in the northern part of Europe investigating time for migration, life-history stage (migration, reproduction) as well as site of origin in individual butterflies. METHODS: Red admirals were captured daily at a coastal site during spring, summer and autumn in 2004 and 2005. For the sampled individuals, reproductive status and fuel content were estimated by visual inspection, and hydrogen isotopes (δ 2H) were analysed in wing samples. δ 2H values was compared with samples from two nearby reference sites in Estonia and Poland. RESULTS: Analysis of hydrogen isotopes (δ 2H) in red admiral wings showed that the spring cohort were of a southerly origin, while those caught in August or later in the autumn were from the local region or areas further to the north. All females caught during spring had developing eggs in their abdomen, but no eggs were found in late summer/autumn. There was a male-biased sex ratio during autumn and a difference in lipid content between years. When comparing the isotopic data with inland nearby locations, it was clear that the range of δ 2H values (- 181 to - 78) was wider at Rybachy as compared to the two reference sites in Estonia and Poland (- 174 to - 100). CONCLUSIONS: During spring, migratory female red admirals arrived from the south and were ready to reproduce, while the autumn passage mainly engaged local and more northern individuals carrying large fuel deposits in preparation for long-distance migration. The phenology data suggest that individuals select to migrate in favourable weather conditions and that numbers may differ between years. Future studies should focus on individual sampling at a wide range of sites to reveal differential migration strategies and timing of migration between sexes and populations of migrating butterflies

    Idiopathic radiographic apical root resorption in wind instrument players

    Get PDF
    Root resorption of the permanent teeth involves an elaborate interaction among inflammatory cells resulting in loss of dental hard tissues. This report describes three clinical cases where idiopathic root resorption occurred in wind instrument playing patients. These patients produce adequate non-orthodontic forces, while playing their instruments, to expose their teeth to root resorbing force. Careful clinical monitoring of patients' teeth should be undertaken, as the additive effects of orthodontic treatment and musical habits are unknown
    • …
    corecore