2,230 research outputs found
Laboratory studies of infrared absorption by NO2 and HNO3
Data concerning the quantitative absorption in the 11 and 22 micron region by HNO3 were obtained. Results are presented indicating the temperature dependence of these bands of HNO3 vapor. The 21.8 micron absorption bands of HNO3 vapor at 40 C are discussed along with the integrated intensity and line parameters for the 6.2 micron band of NO2
Exoplanet atmospheres with GIANO II. Detection of molecular absorption in the dayside spectrum of HD 102195b
The study of exoplanetary atmospheres is key to understand the differences
between their physical, chemical and dynamical processes. Up to now, the bulk
of atmospheric characterization analysis has been conducted on transiting
planets. On some sufficiently bright targets, high-resolution spectroscopy
(HRS) has also been successfully tested for non-transiting planets. We study
the dayside of the non-transiting planet HD 102195b using the GIANO
spectrograph mounted at TNG, demonstrating the feasibility of atmospheric
characterization measurements and molecular detection for non-transiting
planets with the HRS technique using 4-m class telescopes. The Doppler-shifted
planetary signal changes on the order of many km/s during the observations, in
contrast with the telluric absorption which is stationary in wavelength,
allowing us to remove the contamination from telluric lines while preserving
the features of the planetary spectrum. The emission signal from HD 102195b's
atmosphere is then extracted by cross-correlating the residual spectra with
atmospheric models. We detect molecular absorption from water vapor at
4.4 level. We also find convincing evidence for the presence of
methane, which is detected at the 4.1 level. The two molecules are
detected with a combined significance of 5.3, at a semi-amplitude of
the planet radial velocity km/s. We estimate a planet true mass
of and orbital inclination between 72.5 and
84.79 (1). Our analysis indicates a non-inverted atmosphere
for HD 102195b, as expected given the relatively low temperature of the planet,
inefficient to keep TiO/VO in gas phase. Moreover, a comparison with
theoretical expectations and chemical model predictions corroborates our
methane detection and suggests that the detected and signatures
could be consistent with a low C/O ratio.Comment: 12 pages, 12 figures, accepted for publication in A&
Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs
A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of clique-perfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem, W4, bull}-free, both superclasses of triangle-free graphs. © 2009 Elsevier B.V. All rights reserved.Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Soulignac, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Improved parameters of seven Kepler giant companions characterized with SOPHIE and HARPS-N
Radial-velocity observations of Kepler candidates obtained with the SOPHIE
and HARPS-N spectrographs have permitted unveiling the nature of the five giant
planets Kepler-41b, Kepler-43b, Kepler-44b, Kepler-74b, and Kepler-75b, the
massive companion Kepler-39b, and the brown dwarf KOI-205b. These companions
were previously characterized with long-cadence (LC) Kepler data. Here we aim
at refining the parameters of these transiting systems by i) modelling the
published radial velocities (RV) and Kepler short-cadence (SC) data that
provide a much better sampling of the transits, ii) performing new spectral
analyses of the SOPHIE and ESPaDOnS spectra, and iii) improving stellar
rotation periods hence stellar age estimates through gyrochronology, when
possible. Posterior distributions of the system parameters were derived with a
differential evolution Markov chain Monte Carlo approach. Our main results are
as follows: a) Kepler-41b is significantly larger and less dense than
previously found because a lower orbital inclination is favoured by SC data.
This also affects the determination of the geometric albedo that is lower than
previously derived: Ag < 0.135; b) Kepler-44b is moderately smaller and denser
than reported in the discovery paper; c) good agreement was achieved with
published Kepler-43, Kepler-75, and KOI-205 system parameters, although the
host stars Kepler-75 and KOI-205 were found to be slightly richer in metals and
hotter, respectively; d) the previously reported non-zero eccentricities of
Kepler-39b and Kepler-74b might be spurious. If their orbits were circular, the
two companions would be smaller and denser than in the eccentric case. The
radius of Kepler-39b is still larger than predicted by theoretical isochrones.
Its parent star is hotter and richer in metals than previously determined.
[ABRIDGED]Comment: 17 pages, 9 figures, accepted for publication in Astronomy and
Astrophysic
On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid
Golumbic, Lipshteyn and Stern \cite{Golumbic-epg} proved that every graph can
be represented as the edge intersection graph of paths on a grid (EPG graph),
i.e., one can associate with each vertex of the graph a nontrivial path on a
rectangular grid such that two vertices are adjacent if and only if the
corresponding paths share at least one edge of the grid. For a nonnegative
integer , -EPG graphs are defined as EPG graphs admitting a model in
which each path has at most bends. Circular-arc graphs are intersection
graphs of open arcs of a circle. It is easy to see that every circular-arc
graph is a -EPG graph, by embedding the circle into a rectangle of the
grid. In this paper, we prove that every circular-arc graph is -EPG, and
that there exist circular-arc graphs which are not -EPG. If we restrict
ourselves to rectangular representations (i.e., the union of the paths used in
the model is contained in a rectangle of the grid), we obtain EPR (edge
intersection of path in a rectangle) representations. We may define -EPR
graphs, , the same way as -EPG graphs. Circular-arc graphs are
clearly -EPR graphs and we will show that there exist circular-arc graphs
that are not -EPR graphs. We also show that normal circular-arc graphs are
-EPR graphs and that there exist normal circular-arc graphs that are not
-EPR graphs. Finally, we characterize -EPR graphs by a family of
minimal forbidden induced subgraphs, and show that they form a subclass of
normal Helly circular-arc graphs
Exoplanet atmospheres with GIANO. I. Water in the transmission spectrum of HD 189733b
High-resolution spectroscopy (R 20,000) at near-infrared wavelengths
can be used to investigate the composition, structure, and circulation patterns
of exoplanet atmospheres. However, up to now it has been the exclusive dominion
of the biggest telescope facilities on the ground, due to the large amount of
photons necessary to measure a signal in high-dispersion spectra. Here we show
that spectrographs with a novel design - in particular a large spectral range -
can open exoplanet characterisation to smaller telescope facilities too. We aim
to demonstrate the concept on a series of spectra of the exoplanet HD 189733 b
taken at the Telescopio Nazionale Galileo with the near-infrared spectrograph
GIANO during two transits of the planet. In contrast to absorption in the
Earth's atmosphere (telluric absorption), the planet transmission spectrum
shifts in radial velocity during transit due to the changing orbital motion of
the planet. This allows us to remove the telluric spectrum while preserving the
signal of the exoplanet. The latter is then extracted by cross-correlating the
residual spectra with template models of the planet atmosphere computed through
line-by-line radiative transfer calculations, and containing molecular
absorption lines from water and methane. By combining the signal of many
thousands of planet molecular lines, we confirm the presence of water vapour in
the atmosphere of HD 189733 b at the 5.5- level. This signal was
measured only in the first of the two observing nights. By injecting and
retrieving artificial signals, we show that the non-detection on the second
night is likely due to an inferior quality of the data. The measured strength
of the planet transmission spectrum is fully consistent with past CRIRES
observations at the VLT, excluding a strong variability in the depth of
molecular absorption lines.Comment: 10 pages, 8 figures. Accepted for publication in Astronomy &
Astrophysics. v2 includes language editin
- …