2,685 research outputs found

    The Formation of High-Mass Black Holes in Low Mass X-ray Binaries

    Full text link
    In this note we suggest that high-mass black holes; i.e., black holes of several solar masses, can be formed in binaries with low-mass main-sequence companions, provided that the hydrogen envelope of the massive star is removed in common envelope evolution which begins only after the massive star has finished He core burning. That is, the massive star is in the supergiant stage, which lasts only ∌104\sim 10^4 years, so effects of mass loss by He winds are small. Since the removal of the hydrogen envelope of the massive star occurs so late, it evolves essentially as a single star, rather than one in a binary. Thus, we can use evolutionary calculations of Woosley & Weaver (1995) of single stars. We find that the black holes in transient sources can be formed from stars with ZAMS masses in the interval 20-35\msun. The black hole mass is only slightly smaller than the He core mass, typically \sim 7\msun.Comment: 19 pages, substantial changes, accepted in New Astronom

    Evolution and Merging of Binaries with Compact Objects

    Full text link
    In the light of recent observations in which short gamma-ray bursts are interpreted as arising from black-hole(BH), neutron-star(NS) or NS-NS mergings we would like to review our research on the evolution of compact binaries, especially those containing NS's. These were carried out with predictions for LIGO in mind, but are directly applicable to short gamma-ray bursts in the interpretation above. Most important in our review is that we show that the standard scenario for evolving NS-NS binaries always ends up with a low-mass BH (LMBH), NS binary. Bethe and Brown (1998) showed that this fate could be avoided if the two giants in the progenitor binary burned He at the same time, and that in this way the binary could avoid the common envelope evolution of the NS with red giant companion which sends the first born NS into a BH in the standard scenario. The burning of He at the same time requires, for the more massive giants such as the progenitors of the Hulse-Taylor binary NS that the two giants be within 4% of each other in ZAMS mass. Applying this criterion to all binaries results in a factor 5 of LMBH-NS binaries as compared with NS-NS binaries. Our scenario of NS-NS binaries as having been preceded by a double He-star binary is collecting observational support in terms of the nearly equal NS masses within a given close binary.Comment: 32 pages, 1 figure, substantial changes from v

    Supernova electron capture rates for 55Co and 56Ni

    Get PDF
    We have calculated the Gamow-Teller strength distributions for the ground states and first excited states in 55Co and 56Ni. These calculations have been performed by shell model diagonalization in the pf shell using the KB3 interaction. The Gamow-Teller distributions are used to calculate the electron capture rates for typical presupernova conditions. Our 55Co rate is noticeably smaller than the presently adopted rate as it is dominated by weak low-lying transitions rather than the strong Gamow-Teller (GT) resonance which is located at a higher excitation energy in the daughter than usually parametrized. Although our 56Ni rate agrees with the presently adopted rate, we do not confirm the conventional parametrization of the GT centroid. Our results support general trends suggested on the basis of shell model Monte Carlo calculations.Comment: 4 pages, 4 figures, RevTeX 3.1, to appear in Phys. Lett.

    The Determination of Nuclear Level Densities from Experimental Information -

    Get PDF
    A novel Information Theory based method for determining the density of states from prior information is presented. The energy dependence of the density of states is determined from the observed number of states per energy interval and model calculations suggest that the method is sufficiently reliable to calculate the thermal properties of nuclei over a reasonable temperature range.Comment: 7 pages + 6 eps figures, REVTEX 3.

    Dispersive estimates for Schr\"odinger operators with point interactions in R3\mathbb{R}^3

    Full text link
    The study of dispersive properties of Schr\"odinger operators with point interactions is a fundamental tool for understanding the behavior of many body quantum systems interacting with very short range potential, whose dynamics can be approximated by non linear Schr\"odinger equations with singular interactions. In this work we proved that, in the case of one point interaction in R3\mathbb{R}^3, the perturbed Laplacian satisfies the same Lp−LqL^p-L^q estimates of the free Laplacian in the smaller regime q∈[2,3)q\in[2,3). These estimates are implied by a recent result concerning the LpL^p boundedness of the wave operators for the perturbed Laplacian. Our approach, however, is more direct and relatively simple, and could potentially be useful to prove optimal weighted estimates also in the regime q≄3q\geq 3.Comment: To appear on: "Advances in Quantum Mechanics: Contemporary Trends and Open Problems", G. Dell'Antonio and A. Michelangeli eds., Springer-INdAM series 201

    Kepler problem in Dirac theory for a particle with position-dependent mass

    Full text link
    Exact solution of Dirac equation for a particle whose potential energy and mass are inversely proportional to the distance from the force centre has been found. The bound states exist provided the length scale aa which appears in the expression for the mass is smaller than the classical electron radius e2/mc2e^2/mc^2. Furthermore, bound states also exist for negative values of aa even in the absence of the Coulomb interaction. Quasirelativistic expansion of the energy has been carried out, and a modified expression for the fine structure of energy levels has been obtained. The problem of kinetic energy operator in the Schr\"odinger equation is discussed for the case of position-dependent mass. In particular, we have found that for highly excited states the mutual ordering of the inverse mass and momentum operator in the non-relativistic theory is not important.Comment: 9 page
    • 

    corecore