2 research outputs found
Nonlinear thermal instability in a horizontal porous layer with an internal heat source and mass flow
© 2016, Springer-Verlag Wien. Linear and nonlinear stability analyses of Hadley–Prats flow in a horizontal fluid-saturated porous medium with a heat source are performed. The results indicate that, in the linear case, an increase in the horizontal thermal Rayleigh number is stabilizing for both positive and negative values of mass flow. In the nonlinear case, a destabilizing effect is identified at higher mass flow rates. An increase in the heat source has a destabilizing effect. Qualitative changes appear in Rz as the mass flow moves from negative to positive for different internal heat sources
Double-diffusive convection in an inclined porous layer with a concentration-based internal heat source
© 2017, The Author(s). The thermosolutal instability of double-diffusive convection in an inclined fluid-saturated porous layer with a concentration-based internal heat source is investigated. The linear instability of small-amplitude perturbations to the system is analyzed with respect to transverse and longitudinal rolls. The resultant eigenvalue problem is solved numerically utilizing the Chebyshev tau method. It is shown that an increasing inclination angle causes a strong stabilization in the transverse rolls irrespective of the internal heat source or vertical solutal Rayleigh number. Furthermore, substantial qualitative changes are demonstrated in the linear instability thresholds with variations in the inclination angle and concentration-based heat source