12,323 research outputs found

    Hidden unity in the quantum description of matter

    Full text link
    We introduce an algebraic framework for interacting quantum systems that enables studying complex phenomena, characterized by the coexistence and competition of various broken symmetry states of matter. The approach unveils the hidden unity behind seemingly unrelated physical phenomena, thus establishing exact connections between them. This leads to the fundamental concept of {\it universality} of physical phenomena, a general concept not restricted to the domain of critical behavior. Key to our framework is the concept of {\it languages} and the construction of {\it dictionaries} relating them.Comment: 10 pages 2 psfigures. Appeared in Recent Progress in Many-Body Theorie

    Hierarchical Mean-Field Theories in Quantum Statistical Mechanics

    Full text link
    We present a theoretical framework and a calculational scheme to study the coexistence and competition of thermodynamic phases in quantum statistical mechanics. The crux of the method is the realization that the microscopic Hamiltonian, modeling the system, can always be written in a hierarchical operator language that unveils all symmetry generators of the problem and, thus, possible thermodynamic phases. In general one cannot compute the thermodynamic or zero-temperature properties exactly and an approximate scheme named ``hierarchical mean-field approach'' is introduced. This approach treats all possible competing orders on an equal footing. We illustrate the methodology by determining the phase diagram and quantum critical point of a bosonic lattice model which displays coexistence and competition between antiferromagnetism and superfluidity.Comment: 4 pages, 2 psfigures. submitted Phys. Rev.

    Stripes, topological order, and deconfinement in a planar t-Jz model

    Full text link
    We determine the quantum phase diagram of a two-dimensional bosonic t-Jz model as a function of the lattice anisotropy gamma, using a quantum Monte Carlo loop algorithm. We show analytically that the low-energy sectors of the bosonic and the fermionic t-Jz models become equivalent in the limit of small gamma. In this limit, the ground state represents a static stripe phase characterized by a non-zero value of a topological order parameter. This phase remains up to intermediate values of gamma, where there is a quantum phase transition to a phase-segregated state or a homogeneous superfluid with dynamic stripe fluctuations depending on the ratio Jz/t.Comment: 4 pages, 5 figures (2 in color). Final versio
    corecore