234 research outputs found
Electrochemical Impedance Spectroscopy study on ammonia-fed Solid Oxide Fuel Cells
The use of ammonia as a fuel is one of the promising pathways to decarbonize the energy sector. When ammonia is converted into power in the so-called "Ammonia-to-Power", the most interesting technology is the Solid Oxide Fuel Cell (SOFC) that can operate directly with ammonia and reach high performance in terms of efficiency. SOFCs are a high-efficiency and, potentially, low-cost technology, but still suffer from degradation issues related to internal losses. An innovative experimental technique to evaluate losses evolution caused by degradation is electrical impedance spectroscopy (EIS), followed by measurement data post-processing through the Distribution of Relaxation Times (DRT) analysis. In this study, a single SOFC is studied with a combined EIS and DRT methodology, when operating with a gas mixture of hydrogen, nitrogen and ammonia. The results identify the contribution to DRT of fuel dilution and the internal ammonia decomposition reaction
Guidelines for a common port noise impact assessment: the ANCHOR LIFE project
The paper reports the main contents of the guidelines developed in the framework of the project ANCHOR, acronym of Advanced Noise Control strategies in HarbOuR, which is a European Project funded as part of the announcement Life 2017. The guidelines represent an updated version of those elaborated in the NoMEPorts project named 'Good Practice Guide on Port Area Noise Mapping and Management'; the aim is to define a common approach in port noise monitoring and assessment, considering the outcomes of previous EU funded projects and the algorithms defined by the European Directive 2015/996, in order to produce Port Noise Impact Assessments to be included in ports Environmental Management Systems (EMS). The procedures described in the guidelines will guide professionals in organizing and managing geographical data, in characterizing noise sources and defining, for each of them, the correct noise emission power level, in evaluating noise propagation and people exposure to noise and, finally, in selecting the most efficient mitigation action by means of a cost benefit analysis. Moreover, the paper reports the results of a comparison between noise mapping outcomes obtained using the new noise mapping algorithms defined by the 2015/996 Directive and the old 2002/49/EC Annex II ones; especially at long distances from the source the differences between the two methodologies are not negligible
Airborne Sound Power Levels and Spectra of Noise Sources in Port Areas
Airborne port noise has historically suffered from a lack of regulatory assessment compared to other transport infrastructures. This has led to several complaints from citizens living in the urban areas surrounding ports, which is a very common situation, especially in countries facing the Mediterranean sea. Only in relatively recent years has an effort been made to improve this situation, which has resulted in a call for and financing of numerous international cooperation research projects, within the framework of programs such as EU FP7, H2020, ENPI-CBC MED, LIFE, and INTERREG. These projects dealt with issues and aspects of port noise, which is an intrinsically tangled problem, since several authorities and companies operate within the borders of ports, and several different noise sources are present at the same time. In addition, ship classification societies have recently recognized the problem and nowadays are developing procedures and voluntary notations to assess the airborne noise emission from marine vessels. The present work summarizes the recent results of research regarding port noise sources in order to provide a comprehensive database of sources that can be easily used, for example, as an input to the noise mapping phase, and can subsequently prevent citizens' exposure to noise
The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change
The current distribution of forest genetic resources on Earth is the result of a combination of natural processes and human actions. Over time, tree populations have become adapted to their habitats including the local ecological disturbances they face. As the planet enters a phase of human-induced climate change of unprecedented speed and magnitude, however, previously locally-adapted populations are rendered less suitable for new conditions, and ‘natural’ biotic and abiotic disturbances are taken outside their historic distribution, frequency and intensity ranges. Tree populations rely on phenotypic plasticity to survive in extant locations, on genetic adaptation to modify their local phenotypic optimum or on migration to new suitable environmental conditions. The rate of required change, however, may outpace the ability to respond, and tree species and populations may become locally extinct after specific, but as yet unknown and unquantified, tipping points are reached. Here, we review the importance of forest genetic resources as a source of evolutionary potential for adaptation to changes in climate and other ecological factors. We particularly consider climate-related responses in the context of linkages to disturbances such as pests, diseases and fire, and associated feedback loops. The importance of management strategies to conserve evolutionary potential is emphasised and recommendations for policy-makers are provided
Design and preliminary operation of a gasification plant for micro-CHP with internal combustion engine and SOFC
A gasification plant was designed and built to test syngas production from biomass for electricity generation on microscale. The plant is mainly composed by a downdraft reactor, a gas cleaning section with a cyclone and a wet scrubber, a blower for syngas extraction and an ICE (Internal Combustion Engine, Lombardini LGA 340), equipped with an alternator. A small quantity of producer was also eventually sent to a button cell SOFC (Solid Oxide Fuel Cell) for preliminary characterization. The plant was tested in a preliminary experimental campaign to evaluate mass and energy balances and process efficiency. Woody biomass was used and the producer gas firstly passed through impingers bottles, to condense and measure tar concentration (according to CEN/TS 15439), and then the remaining uncondensed gas was analyzed with a micro-GC (Gas Chromatograph). The paper presents and discusses the results of the preliminary tests carried out
The burden of self-reported acute gastrointestinal illness in Italy: a retrospective survey, 2008–2009
A retrospective telephone survey (n=3490) was conducted in Italy between 2008 and 2009 to estimate the occurrence of self-reported acute gastrointestinal illness (AGI) and to describe subjects' recourse to healthcare, using a symptom-based case definition. Three hundred and ten AGI cases were identified. The annual incidence rate was 1·08 episodes/person-year (95% confidence interval 0·90–1·14). The proportion of subjects consulting physicians was 39·5% while only 0·3% submitted a specimen for laboratory investigation. Risk factors for AGI and medical care-seeking were identified using logistic regression analysis. Females, children and young adults had a significantly higher incidence rate of AGI. Factors associated with medical care-seeking were age <10 years, presence of fever, diarrhoea, and duration of illness >3 days. Our results provide a relevant contribution towards estimating the global burden of AGI using standard methods that ensure a good level of comparability with other studies
Design of urban furniture to enhance the soundscape: A case study
In modern urban scenarios all the aspects of the historical heritage, including public open spaces and ancient buildings, have to meet the high increase of density of infrastructures and constructions, with the consequent change of visual and sound environments. This in turn affects people’s quality of life. Because of the growing interest on this problem, this study investigates the relationship between soundscape and design solutions for urban furniture, considering technical and environmental feasibility of the designing process, from the materials characteristics, to the acoustic and psychoacoustic impact of the tool on the user. The process includes the acoustic suitability of 3D printing materials, the suitability of acoustic design using software simulation, the experimental assessment of the performance of the 3D printed prototype, and the statistical evaluation of the chosen studying parameters and conditions. This paper describes all the stages of the designing process, with a focus on the study of shapes and volumes of the prototype and on its impact on the user’s perception. FEM simulations and experimental tests performed in a semi-anechoic chamber allowed to validate the design process. These analyses proved that the designed prototype of urban furniture can not only positively influence the physical environment but also the psychoacoustic perception of it
- …