394 research outputs found
Pilot study on the antibacterial activity of hydrogen peroxide and silver ions in the hospital environment
BACKGROUND:
Nosocomial environmental contamination plays an important role in the transmission of several health care-associated pathogens. Control of surfaces contamination can reduce the risk of cross-infection in hospitals. The aim of our study is to evaluate the disinfectant effectiveness of hydrogen peroxide and silver ions, against nosocomial multidrug-resistant strains, when it's used directly on surfaces.
METHODS:
Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa ATCC 15442 and the same multidrug-resistant clinical isolates were selected to study the effectiveness of the disinfectant used in suspension or on the clean and dirty surface.
RESULTS:
Regarding the suspension activity test, the hydrogen peroxide and silver ions resulted effective after 5 min for ATCC strains and after 10 min for multidrug-resistant isolates; about the surface activity test, its action resulted after 10 min for ATCC strains and after 15 min for multidrug-resistant isolates. Moreover, it was more effective when used in the absence or in presence of a low concentration of biological materials.
CONCLUSIONS:
In a complex environment such as hospital wards, to have a disinfectant notoriously effective but more easy and quick to use would be an useful solution to treat small surfaces occasionally contaminated by biological materials
Efficient negation using abstract interpretation
While negation has been a very active ĂĄrea of research in
logic programming, comparatively few papers have been devoted to implementation issues. Furthermore, the negation-related capabilities of current Prolog systems are limited. We recently presented a novel method for incorporating negation in a Prolog compiler which takes a number of
existing methods (some modified and improved by us) and uses them in a combined fashion. The method makes use of information provided by a global analysis of the source code. Our previous work focused on the systematic description of the techniques and the reasoning about correctness and completeness of the method, but provided no experimental evidence to evalĂșate the proposal. In this paper, we report on an implementation, using the Ciao Prolog system preprocessor, and provide experimental data which indicates that the method is not only feasible but also quite promising from the efficiency point of view. In addition, the tests have provided new insight as to how to improve the proposal further. Abstract interpretation techniques are shown to offer important improvements in this application
Multiple verification in computational modeling of bone pathologies
We introduce a model checking approach to diagnose the emerging of bone
pathologies. The implementation of a new model of bone remodeling in PRISM has
led to an interesting characterization of osteoporosis as a defective bone
remodeling dynamics with respect to other bone pathologies. Our approach allows
to derive three types of model checking-based diagnostic estimators. The first
diagnostic measure focuses on the level of bone mineral density, which is
currently used in medical practice. In addition, we have introduced a novel
diagnostic estimator which uses the full patient clinical record, here
simulated using the modeling framework. This estimator detects rapid (months)
negative changes in bone mineral density. Independently of the actual bone
mineral density, when the decrease occurs rapidly it is important to alarm the
patient and monitor him/her more closely to detect insurgence of other bone
co-morbidities. A third estimator takes into account the variance of the bone
density, which could address the investigation of metabolic syndromes, diabetes
and cancer. Our implementation could make use of different logical combinations
of these statistical estimators and could incorporate other biomarkers for
other systemic co-morbidities (for example diabetes and thalassemia). We are
delighted to report that the combination of stochastic modeling with formal
methods motivate new diagnostic framework for complex pathologies. In
particular our approach takes into consideration important properties of
biosystems such as multiscale and self-adaptiveness. The multi-diagnosis could
be further expanded, inching towards the complexity of human diseases. Finally,
we briefly introduce self-adaptiveness in formal methods which is a key
property in the regulative mechanisms of biological systems and well known in
other mathematical and engineering areas.Comment: In Proceedings CompMod 2011, arXiv:1109.104
Multiscale Bone Remodelling with Spatial P Systems
Many biological phenomena are inherently multiscale, i.e. they are
characterized by interactions involving different spatial and temporal scales
simultaneously. Though several approaches have been proposed to provide
"multilayer" models, only Complex Automata, derived from Cellular Automata,
naturally embed spatial information and realize multiscaling with
well-established inter-scale integration schemas. Spatial P systems, a variant
of P systems in which a more geometric concept of space has been added, have
several characteristics in common with Cellular Automata. We propose such a
formalism as a basis to rephrase the Complex Automata multiscaling approach
and, in this perspective, provide a 2-scale Spatial P system describing bone
remodelling. The proposed model not only results to be highly faithful and
expressive in a multiscale scenario, but also highlights the need of a deep and
formal expressiveness study involving Complex Automata, Spatial P systems and
other promising multiscale approaches, such as our shape-based one already
resulted to be highly faithful.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005
Embryonic stem cell-derived CD166+ precursors develop into fully functional sinoatrial-like cells
Rationale: A cell-based biological pacemaker is based on the differentiation of stem cells and the selection of a population displaying the molecular and functional properties of native sinoatrial node (SAN) cardiomyocytes. So far, such selection has been hampered by the lack of proper markers. CD166 is specifically but transiently expressed in the mouse heart tube and sinus venosus, the prospective SAN.
Objective: We have explored the possibility of using CD166 expression for isolating SAN progenitors from differentiating embryonic stem cells.
Methods and Results: We found that in embryonic day 10.5 mouse hearts, CD166 and HCN4, markers of the pacemaker tissue, are coexpressed. Sorting embryonic stem cells for CD166 expression at differentiation day 8 selects a population of pacemaker precursors. CD166(+) cells express high levels of genes involved in SAN development (Tbx18, Tbx3, Isl-1, Shox2) and function (Cx30.2, HCN4, HCN1, CaV1.3) and low levels of ventricular genes (Cx43, Kv4.2, HCN2, Nkx2.5). In culture, CD166(+) cells form an autorhythmic syncytium composed of cells morphologically similar to and with the electrophysiological properties of murine SAN myocytes. Isoproterenol increases (+57%) and acetylcholine decreases (-23%) the beating rate of CD166-selected cells, which express the -adrenergic and muscarinic receptors. In cocultures, CD166-selected cells are able to pace neonatal ventricular myocytes at a rate faster than their own. Furthermore, CD166(+) cells have lost pluripotency genes and do not form teratomas in vivo.
Conclusions: We demonstrated for the first time the isolation of a nonteratogenic population of cardiac precursors able to mature and form a fully functional SAN-like tissue
Sarsâcovâ2 and public transport in Italy
Although direct contact is considered the main mode of transmission of SARSâCoVâ2, environmental factors play an important role. In this study, we evaluated the presence of SARSâ CoVâ2 on bus and train surfaces. From the buses, we took samples from the following areas: handrails used to enter or exit the bus, stop request buttons and handles next to the seats. From the trains, the sampled surfaces were handrails used to enter or exit the train, door open/close buttons, handles next to the seats, tables and toilet handles. SARSâCoVâ2 was detected on 10.7% of the tested surfaces overall, 19.3% of bus surfaces and 2% of train surfaces (p < 0.0001). On the buses, the most contaminated surfaces were the handles near the seats (12.8%), followed by door open/close buttons (12.5%) and handrails (10.5%). Of the five analyzed transport companies, bus companies were the most contaminated, in particular, companies C (40%) and B (23.3%). A greater number of positive samples were found among those taken at 10:00 a.m. and 10:55 a.m. (45% and 40%, respectively). The presence of the virus on many bus surfaces highlights how the sanitation systems on public transport currently in use are not sufficient to limit the spread of SARSâCoVâ2
- âŠ