41 research outputs found

    Stem Cell Based Therapies for Glaucoma

    Get PDF
    Glaucoma remains one of the leading causes of worldwide blindness. In England and Wales glaucoma is a major or contributory factor for 12-14% of all registrations for blindness and partial sight, second only to macular degeneration (Bunce et al., 2010). The worldwide burden is more significant, with glaucoma being the second leading cause of global blindness after cataract (Resnikoff et al., 2004). It has been estimated that 60.5 million people worldwide would be affected by glaucoma by 2010, with the figure expected to rise to 80 million by 2020 (Quigley and Broman, 2006). Current treatments for glaucoma comprise the lowering of intraocular pressure by eye drops, laser procedures or drainage surgery. However, as implied by the statistics above, many patients experience significant visual loss due to degeneration of retinal ganglion cells (RGCs) despite the advances in the treatments currently available. The need for novel therapies exists for such patients, in particular those with end stage glaucoma, where maintenance of a small number of surviving RGCs may yet permit a reasonable quality of life (Much et al., 2008). Stem cell therapies developed in the laboratory and translated to clinical practice provide an exciting and realistic hope for those affected by degenerative retinal diseases including glaucoma. This chapter will discuss three mechanisms by which stem cell therapies may potentially offer hope to patients with glaucoma, namely local retinal ganglion cell replacement, retina and optic nerve regeneration and stem cell mediated neuroprotection

    Transcriptomics of CD29+/CD44+ cells isolated from hPSC retinal organoids reveals a single cell population with retinal progenitor and Müller glia characteristics

    Get PDF
    Müller glia play very important and diverse roles in retinal homeostasis and disease. Although much is known of the physiological and morphological properties of mammalian Müller glia, there is still the need to further understand the profile of these cells during human retinal development. Using human embryonic stem cell-derived retinal organoids, we investigated the transcriptomic profiles of CD29+/CD44+ cells isolated from early and late stages of organoid development. Data showed that these cells express classic markers of retinal progenitors and Müller glia, including NFIX, RAX, PAX6, VSX2, HES1, WNT2B, SOX, NR2F1/2, ASCL1 and VIM, as early as days 10-20 after initiation of retinal differentiation. Expression of genes upregulated in CD29+/CD44+ cells isolated at later stages of organoid development (days 50-90), including NEUROG1, VSX2 and ASCL1 were gradually increased as retinal organoid maturation progressed. Based on the current observations that CD24+/CD44+ cells share the characteristics of early and late-stage retinal progenitors as well as of mature Müller glia, we propose that these cells constitute a single cell population that upon exposure to developmental cues regulates its gene expression to adapt to functions exerted by Müller glia in the postnatal and mature retina

    Cell-Based Therapies for Glaucoma

    Get PDF
    Glaucomatous optic neuropathy (GON) is the major cause of irreversible visual loss worldwide and can result from a range of disease etiologies. The defining features of GON are retinal ganglion cell (RGC) degeneration and characteristic cupping of the optic nerve head (ONH) due to tissue remodeling, while intraocular pressure remains the only modifiable GON risk factor currently targeted by approved clinical treatment strategies. Efforts to understand the mechanisms that allow species such as the zebrafish to regenerate their retinal cells have greatly increased our understanding of regenerative signaling pathways. However, proper integration within the retina and projection to the brain by the newly regenerated neuronal cells remain major hurdles. Meanwhile, a range of methods for in vitro differentiation have been developed to derive retinal cells from a variety of cell sources, including embryonic and induced pluripotent stem cells. More recently, there has been growing interest in the implantation of glial cells as well as cell-derived products, including neurotrophins, microRNA, and extracellular vesicles, to provide functional support to vulnerable structures such as RGC axons and the ONH. These approaches offer the advantage of not relying upon the replacement of degenerated cells and potentially targeting earlier stages of disease pathogenesis. In order to translate these techniques into clinical practice, appropriate cell sourcing, robust differentiation protocols, and accurate implantation methods are crucial to the success of cell-based therapy in glaucoma. Translational Relevance: Cell-based therapies for glaucoma currently under active development include the induction of endogenous regeneration, implantation of exogenously derived retinal cells, and utilization of cell-derived products to provide functional support

    MicroRNA profile of extracellular vesicles released by Müller glial cells

    Get PDF
    IntroductionAs with any other radial glia in the central nervous system, Müller glia derive from the same neuroepithelial precursors, perform similar functions, and exhibit neurogenic properties as radial glia in the brain. Müller glial cells retain progenitor-like characteristics in the adult human eye and can partially restore visual function upon intravitreal transplantation into animal models of glaucoma. Recently, it has been demonstrated that intracellular communication is possible via the secretion of nano-sized membrane-bound extracellular vesicles (EV), which contain bioactive molecules like microRNA (miRNA) and proteins that induce phenotypic changes when internalised by recipient cells.MethodsWe conducted high-throughput sequencing to profile the microRNA signature of EV populations secreted by Müller glia in culture and used bioinformatics tools to evaluate their potential role in the neuroprotective signalling attributed to these cells.ResultsSequencing of miRNA within Müller EV suggested enrichment with species associated with stem cells such as miR-21 and miR-16, as well as with miRNA previously found to play a role in diverse Müller cell functions in the retina: miR-9, miR-125b, and the let-7 family. A total of 51 miRNAs were found to be differentially enriched in EV compared to the whole cells from which EV originated. Bioinformatics analyses also indicated that preferential enrichment of species was demonstrated to regulate genes involved in cell proliferation and survival, including PTEN, the master inhibitor of the PI3K/AKT pathway.DiscussionThe results suggest that the release by Müller cells of miRNA-enriched EV abundant in species that regulate anti-apoptotic signalling networks is likely to represent a significant proportion of the neuroprotective effect observed after the transplantation of these cells into animal models of retinal ganglion cell (RGC) depletion. Future studies will seek to evaluate the modulation of putative genes as well as the activation of these pathways in in vitro and in vivo models following the internalisation of Müller-EV by target retinal neurons

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Regulatory and Pathogenic Roles of Müller Glial Cells in Retinal Neovascular Processes and Their Potential for Retinal Regeneration

    No full text
    © 2010 by S. Karger AG, P.O. Box, CH-4009 Basel (Switzerland). All rights reserved. Müller glial cells are known to play a very important role in retinal homeostasis, and many metabolic functions have been ascribed to these cells not only in the normal but in the diseased retina. This chapter addresses a wide variety of activities attributed to Müller glial cells. It describes how activation of Müller glia by pro-inflammatory and pro-angiogenic factors may contribute to the development of neovascularisation and fibrosis, the characteristic pathological features of diabetic retinopathy. The chapter also highlights the regulatory role that Müller glia exert in various retinal functions, including the prevention of neural damage due to their production of neurotrophins in response to inflammatory and angiogenic signals. Recent findings that a sub-population of Müller glia have the ability to regenerate retinal neurons in adult life are described, and the implications for the potential use of Müller stem cells for cell-based therapies to regenerate diabetic retina are discussed

    Recent Advances towards the Clinical Application of Stem Cells for Retinal Regeneration

    No full text
    Retinal degenerative diseases constitute a major cause of irreversible blindness in the world. Stem cell-based therapies offer hope for these patients at risk of or suffering from blindness due to the deterioration of the neural retina. Various sources of stem cells are currently being investigated, ranging from human embryonic stem cells to adult-derived induced pluripotent stem cells as well as human Müller stem cells, with the first clinical trials to investigate the safety and tolerability of human embryonic stem cell-derived retinal pigment epithelium cells having recently commenced. This review aims to summarize the latest advances in the development of stem cell strategies for the replacement of retinal neurons and their supportive cells, the retinal pigment epithelium (RPE) affected by retinal degenerative conditions. Particular emphasis will be given to the advances in stem cell transplantation and the challenges associated with their translation into clinical practice
    corecore