4 research outputs found

    Globally-Linked Vortex Clusters in Trapped Wave Fields

    Full text link
    We put forward the existence of a rich variety of fully stationary vortex structures, termed H-clusters, made of an increasing number of vortices nested in paraxial wave fields confined by trapping potentials. However, we show that the constituent vortices are globally linked, rather than products of independent vortices. Also, they always feature a monopolar global wave front and exist in nonlinear systems, such as Bose-Einstein condensates. Clusters with multipolar global wave fronts are non-stationary or at best flipping.Comment: 4 pages, 5 PostScript figure

    Generation and interaction of solitons in Bose-Einstein condensates

    No full text
    Generation, interaction and detection of dark solitons in Bose-Einstein condensates is considered. In particular, we focus on the dynamics resulting from phase imprinting and density engineering. The generation of soliton pairs as well as their interaction is also considered. Finally, motivated by the recent experimental results of Cornish et al. (Phys. Rev Lett. 85, 1795, 2000), we analyze the stability of dark solitons under changes of the scattering length and thereby demonstrate a new way to detect them. Our theoretical and numerical results compare well with the existing experimental ones and provide guidance for future experiments.Comment: Accepted for publication in PR
    corecore