3,872 research outputs found
John
Reviewed Book: Beasley-Murray, George Raymond. John. Waco, Tex: Word Books, 1988. Word biblical commentary; 36
Equation-free modeling of evolving diseases: Coarse-grained computations with individual-based models
We demonstrate how direct simulation of stochastic, individual-based models
can be combined with continuum numerical analysis techniques to study the
dynamics of evolving diseases. % Sidestepping the necessity of obtaining
explicit population-level models, the approach analyzes the (unavailable in
closed form) `coarse' macroscopic equations, estimating the necessary
quantities through appropriately initialized, short `bursts' of
individual-based dynamic simulation. % We illustrate this approach by analyzing
a stochastic and discrete model for the evolution of disease agents caused by
point mutations within individual hosts. % Building up from classical SIR and
SIRS models, our example uses a one-dimensional lattice for variant space, and
assumes a finite number of individuals. % Macroscopic computational tasks
enabled through this approach include stationary state computation, coarse
projective integration, parametric continuation and stability analysis.Comment: 16 pages, 8 figure
Second Overtone Pulsators Among Delta Scuti Stars
We investigate the modal stability of stellar models at masses and luminosity
levels corresponding to post main sequence luminous delta scuti pulsators. The
envelope models have been computed at fixed mass value, luminosity level and
chemical composition (Y=0.28, Z=0.02). According to a nonlinear approach to
radial oscillations the present investigation predicts the occurrence of stable
second overtone pulsators for the first time. The shape of both light and
velocity curves are presented and discussed, providing a useful tool for the
identification of second overtone pulsators among the known groups of radially
pulsating stars. The period ratios of mixed mode pulsators obtained by
perturbing the first and the second overtone radial eigenfunctions are in
agreement with observative values. Finally, the physical structure and the
dynamical properties of second overtone pulsators are discussed in detail. The
role played by the nodal lines in the destabilization of second overtone
pulsators is also pointed out.Comment: 20 pages, 11 Postscript figures, uses aaspp4.sty and tighten.st
Design of organic Rankine cycles using a non-conventional optimization approach
The organic Rankine cycle is a suitable technology for utilizing low grade heat for electricity production. Compared to the traditional steam Rankine cycle, the organic Rankine cycle is beneficial, since it enables the choice of a working fluid which performs better than steam at low heat input temperatures and at lowpower outputs. Selecting the process layout of the organic Rankine cycle and the working fluid are two key design decisions which are critical for the thermodynamic and economic performance of the cycle. The prevailing approach used in the design and optimization of organic Rankine cycles is to model the heatexchangers by assuming a fixed minimum temperature difference. The objective of this work is to assess the applicability of this conventional optimization approach and a non-conventional optimization approach. In thenon-conventional optimization approach a total UA-value (the product of the overall heat transfer coefficient and the heat transfer area) is assigned to the cycle, while the distribution of this total UA-value to each of the heat exchangers is optimized. Optimizations are carried out for three different marine engine waste heatsources at temperatures ranging from 90 °C to 285 °C. The results suggest that the conventional optimization approach is not suitable for estimating the performance potential when the temperature profiles in the heat exchangers are closely matched. This is exemplified for the fluid MDM where the temperature profile of preheating aligns with the heat source fluid and for the zeotropic mixture R32/R134a where the temperature profile of condensation aligns with the cooling water. Furthermore, the conventional optimization approach shows weaknesses in evaluating the feasibility of using a recuperator, when the expander outlet temperature is high. In these cases the non-conventional optimization approach is the more suited methodology for designing organic Rankine cycles
NIR spectroscopy of the Sun and HD20010 - Compiling a new linelist in the NIR
Context: Effective temperature, surface gravity, and metallicity are basic
spectroscopic stellar parameters necessary to characterize a star or a
planetary system. Reliable atmospheric parameters for FGK stars have been
obtained mostly from methods that relay on high resolution and high
signal-to-noise optical spectroscopy. The advent of a new generation of high
resolution near-IR spectrographs opens the possibility of using classic
spectroscopic methods with high resolution and high signal-to-noise in the NIR
spectral window. Aims: We aim to compile a new iron line list in the NIR from a
solar spectrum to derive precise stellar atmospheric parameters, comparable to
the ones already obtained from high resolution optical spectra. The spectral
range covers 10 000 {\AA} to 25 000 {\AA}, which is equivalent to the Y, J, H,
and K bands. Methods: Our spectroscopic analysis is based on the iron
excitation and ionization balance done in LTE. We use a high resolution and
high signal-to-noise ratio spectrum of the Sun from the Kitt Peak telescope as
a starting point to compile the iron line list. The oscillator strengths (log
gf) of the iron lines were calibrated for the Sun. The abundance analysis was
done using the MOOG code after measuring equivalent widths of 357 solar iron
lines. Results: We successfully derived stellar atmospheric parameters for the
Sun. Furthermore, we analysed HD20010, a F8IV star, from which we derived
stellar atmospheric parameters using the same line list as for the Sun. The
spectrum was obtained from the CRIRES- POP database. The results are compatible
with the ones found in the literature, confirming the reliability of our line
list. However, due to the quality of the data we obtain large errors.Comment: 9 pages and 9 figure
Experimental investigation of interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device
A recently proposed face-sheet/core interface crack arresting device is implemented in sandwich beams and tested using the Sandwich Tear Test (STT) configuration. Fatigue loading conditions are applied to propagate the crack and determine the effect of the crack stopper on the fatigue growth rate and arrest of the crack. Digital image correlation is used through the duration of the fatigue experiment to track the strain evolution as the crack tip advances. The measured strains are related to crack tip propagation, arrest, and re-initiation of the crack. A finite element model is used to calculate the energy release rate, mode mixity and to simulate crack propagation and arrest of the crack. Finally the effectiveness of the crack arresting device is demonstrated on composite sandwich beams subjected to fatigue loading conditions
Cepheid Mass-loss and the Pulsation -- Evolutionary Mass Discrepancy
I investigate the discrepancy between the evolution and pulsation masses for
Cepheid variables. A number of recent works have proposed that non-canonical
mass-loss can account for the mass discrepancy. This mass-loss would be such
that a 5Mo star loses approximately 20% of its mass by arriving at the Cepheid
instability strip; a 14Mo star, none. Such findings would pose a serious
challenge to our understanding of mass-loss. I revisit these results in light
of the Padova stellar evolutionary models and find evolutionary masses are
()% greater than pulsation masses for Cepheids between 5<M/Mo<14. I
find that mild internal mixing in the main-sequence progenitor of the Cepheid
are able to account for this mass discrepancy.Comment: 15 pages, 3 figures, ApJ accepte
- …