1,709 research outputs found

    Wall bounded flows manipulation using sinusoidal riblets

    Get PDF
    We experimentally investigate the effects of microgrooves on the development of a zero pressure gradient turbulent boundary layer. Starting from the well-known streamwise aligned riblets, we look at the effect of wavy riblets, characterized by a sinusoidal pattern in the mean flow direction. We perform hot wire experiments as well as particle image velocimetry to get some insights on the effect of the sinusoidal shape on the near wall organisation of the boundary layer. The statistical analysis clearly shows that the wavy pattern has a strong influence on the near wall structure of the boundary layer. The statistical analysis performed using the VITA technique reveals that the coherent structures that characterize the turbulent boundary layer are attenuated by the geometry manipulation. Furthermore, the POD reconstructed velocity fields, measured with PIV, reveal that the manipulation tampers with the momentum exchange occurring between the near wall and the outer region of the boundary layer, hence suggesting a modified turbulence production cycle

    Deep reinforcement learning for active control of a three-dimensional bluff body wake

    Get PDF
    The application of deep reinforcement learning (DRL) to train an agent capable of learning control laws for pulsed jets to manipulate the wake of a bluff body is presented and discussed. The work has been performed experimentally at a value of the Reynolds number Re similar to 10(5) adopting a single-step approach for the training of the agent. Two main aspects are targeted: first, the dimension of the state, allowing us to draw conclusions on its effect on the training of the neural network; second, the capability of the agent to learn optimal strategies aimed at maximizing more complex tasks identified with the reward. The agent is trained to learn strategies that minimize drag only or minimize drag while maximizing the power budget of the fluidic system. The results show that independently on the definition of the reward, the DRL learns forcing conditions that yield values of drag reduction that are as large as 10% when the reward is based on the drag minimization only. On the other hand, when also the power budget is accounted for, the agent learns forcing configurations that yield lower drag reduction (5%) but characterized by large values of the efficiency. A comparison between the natural and the forced conditions is carried out in terms of the pressure distribution across the model's base. The different structure of the wake that is obtained depending on the training of the agent suggests that the possible forcing configuration yielding similar values of the reward is local minima for the problem. This represents, to the authors' knowledge, the first application of a single-step DRL in an experimental framework at large values of the Reynolds number to control the wake of a three-dimensional bluff body. Published under an exclusive license by AIP Publishing

    Dynamics of Global Entanglement under Decoherence

    Full text link
    We investigate the dynamics of global entanglement, the Meyer-Wallach measure, under decoherence, analytically. We study two important class of multi-partite entangled states, the Greenberger-Horne-Zeilinger and the W state. We obtain exact results for various models of system-environment interactions (decoherence). Our results shows distinctly different scaling behavior for these initially entangled states indicating a relative robustness of the W state, consistent with previous studies.Comment: 5 pages and 5 figure

    Exploring the ferromagnetic behaviour of a repulsive Fermi gas via spin dynamics

    Full text link
    Ferromagnetism is a manifestation of strong repulsive interactions between itinerant fermions in condensed matter. Whether short-ranged repulsion alone is sufficient to stabilize ferromagnetic correlations in the absence of other effects, like peculiar band dispersions or orbital couplings, is however unclear. Here, we investigate ferromagnetism in the minimal framework of an ultracold Fermi gas with short-range repulsive interactions tuned via a Feshbach resonance. While fermion pairing characterises the ground state, our experiments provide signatures suggestive of a metastable Stoner-like ferromagnetic phase supported by strong repulsion in excited scattering states. We probe the collective spin response of a two-spin mixture engineered in a magnetic domain-wall-like configuration, and reveal a substantial increase of spin susceptibility while approaching a critical repulsion strength. Beyond this value, we observe the emergence of a time-window of domain immiscibility, indicating the metastability of the initial ferromagnetic state. Our findings establish an important connection between dynamical and equilibrium properties of strongly-correlated Fermi gases, pointing to the existence of a ferromagnetic instability.Comment: 8 + 17 pages, 4 + 8 figures, 44 + 19 reference

    Algebraic Bethe Ansatz for a discrete-state BCS pairing model

    Full text link
    We show in detail how Richardson's exact solution of a discrete-state BCS (DBCS) model can be recovered as a special case of an algebraic Bethe Ansatz solution of the inhomogeneous XXX vertex model with twisted boundary conditions: by implementing the twist using Sklyanin's K-matrix construction and taking the quasiclassical limit, one obtains a complete set of conserved quantities, H_i, from which the DBCS Hamiltonian can be constructed as a second order polynomial. The eigenvalues and eigenstates of the H_i (which reduce to the Gaudin Hamiltonians in the limit of infinitely strong coupling) are exactly known in terms of a set of parameters determined by a set of on-shell Bethe Ansatz equations, which reproduce Richardson's equations for these parameters. We thus clarify that the integrability of the DBCS model is a special case of the integrability of the twisted inhomogeneous XXX vertex model. Furthermore, by considering the twisted inhomogeneous XXZ model and/or choosing a generic polynomial of the H_i as Hamiltonian, more general exactly solvable models can be constructed. -- To make the paper accessible to readers that are not Bethe Ansatz experts, the introductory sections include a self-contained review of those of its feature which are needed here.Comment: 17 pages, 5 figures, submitted to Phys. Rev.

    Connecting dissipation and phase slips in a Josephson junction between fermionic superfluids

    Full text link
    We study the emergence of dissipation in an atomic Josephson junction between weakly-coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the BEC-BCS crossover. We explore different dynamical regimes by tuning the bias chemical potential between the two superfluid reservoirs. For small excitations, we observe dissipation and phase coherence to coexist, with a resistive current followed by well-defined Josephson oscillations. We link the junction transport properties to the phase-slippage mechanism, finding that vortex nucleation is primarily responsible for the observed trends of conductance and critical current. For large excitations, we observe the irreversible loss of coherence between the two superfluids, and transport cannot be described only within an uncorrelated phase-slip picture. Our findings open new directions for investigating the interplay between dissipative and superfluid transport in strongly correlated Fermi systems, and general concepts in out-of-equlibrium quantum systems.Comment: 6 pages, 4 figures + Supplemental Materia
    • …
    corecore