203 research outputs found
Conversion of K-Rb mixtures into stable molecules
We study the conversion of K and Rb atoms into stable molecules
through the stimulated Raman adiabatic passage (STIRAP) in photoassociation
assisted with Feshbach resonance. Starting with the mean-field Langrange
density, we show that the atom-to-molecule conversion efficiency by STIRAP
aided by Feshbach resonance is much larger than that by bare Feshbach
resonance. We also study the influence of the population imbalance on the
atom-to-molecule conversion.Comment: Revtex, 5 pages, 3 figures; version to appear in PRA (some content
changed
Creating stable molecular condensate using a generalized Raman adiabatic passage scheme
We study the Feshbach resonance assisted stimulated adiabatic passage of an
effective coupling field for creating stable molecules from atomic Bose
condensate. By exploring the properties of the coherent population trapping
state, we show that, contrary to the previous belief, mean-field shifts need
not to limit the conversion efficiency as long as one chooses an adiabatic
passage route that compensates the collision mean-field phase shifts and avoids
the dynamical unstable regime.Comment: 4+\epsilon pages, 3 figure
Nuclear halo and the coherent nuclear interaction
The unusual structure of Li11, the first halo nucleus found, is analyzed by
the Preparata model of nuclear structure. By applying Coherent Nucleus Theory,
we obtain an interaction potential for the halo-neutrons that rightly
reproduces the fundamental state of the system.Comment: 9 pages Submitted to International Journal of Modern Physics E
(IJMPE
Coherent population trapping in two-electron three-level systems with aligned spins
The possibility of coherent population trapping in two electron states with
aligned spins (ortho-system) is evidenced. From the analysis of a three-level
atomic system containing two electrons, and driven by the two laser fields
needed for coherent population trapping, a conceptually new kind of
two-electron dark state appears. The properties of this trapping are studied
and are physically interpreted in terms of a dark hole, instead of a dark
two-electron state. This technique, among many other applications, offers the
possibility of measuring, with subnatural resolution, some superposition-state
matrix-elements of the electron-electron correlation that due to their time
dependent nature are inaccesible by standard measuring procedures.Comment: 10 pages and 4 figure
Atom-to-molecule conversion efficiency and adiabatic fidelity
The efficiency of converting two-species fermionic atoms into bosonic
molecules is investigated in terms of mean-field Lagrangian density. We find
that the STIRAP technique aided by Feshbach resonance is more effective than
the bare Fechbach resonance for Li atoms rather than K atoms. We
also make general consideration on the symmetry and its relevant conservation
law, which enable us to introduce a natural definition of adiabatic fidelity
for CPT state. The calculated values of the fidelity then provide an
interpretation on why the conversion efficiencies for K and Li are
distinctly different.Comment: Revtex, 6 pages, 4 figure
Steady state behaviour in atomic three-level lambda and ladder systems with incoherent population pumping
The steady state in three-level lambda and ladder systems is studied. It is
well-known that in a lambda system this steady state is the coherent population
trapping state, independent of the presence of spontaneous emission. In
contrast, the steady state in a ladder system is in general not stable against
radiative decay and exhibits a minimum in the population of the ground state.
It is shown that incoherent population pumping destroys the stability of the
coherent population trapping state in the lambda system and suppresses a
previously discovered sharp dip in the steady state response. In the ladder
system the observed minimum disappears in the presence of an incoherent pump on
the upper transition.Comment: 4 pages, RevTex, 5 figures, to appear in Phys. Rev.
Slow Light amplification in a non-inverted gain medium
We investigate the propagation of a coherent probe light pulse through a
three-level atomic medium (in the --configuration) in the presence of
a pump laser under the conditions for gain without inversion. When the carrier
frequency of the probe pulse and the pump laser are in a Raman configuration,
we show that it is possible to amplify a slow propagating pulse. We also
analyze the regime in which the probe pulse is slightly detuned from resonance
where we observe anomalous light propagation.Comment: 7 pages, 10 figures. To be published in Europhysics Letter
Visualisation analysis for exploring prerequisite relations in textbooks
Building automatic strategies for organising knowledge contained in textbooks has a tremendous potential to enhance meaningful learning. Automatic identification of prerequisite relation (PR) between concepts in a textbook is a well-known way for knowledge structuring, yet it is still an open issue. Our research contributes for better understanding and exploring the phenomenon of PR in textbooks, by providing a collection of visualisation techniques for PR exploration and analysis, that we used for the design of and then the refinement of our algorithm for PR extraction
PRET: Prerequisite-enriched terminology. A case study on educational texts
In this paper we present PRET, a gold dataset annotated for prerequisite relations between educational concepts extracted from a computer science textbook, and we describe the language and domain independent approach for the creation of the resource. Additionally, we have created an annotation tool to support, validate and analyze the annotation
- …