730 research outputs found

    A High-Resolution Rotation Curve of NGC 6822: A Test-case for Cold Dark Matter

    Full text link
    We present high resolution rotation curves of the local group dwarf irregular galaxy NGC 6822 obtained with the Australia Telescope Compact Array. Our best curves have an angular resolution of 8'' or 20 pc and contain some 250 independent points. The stellar and gas components of NGC 6822 cannot explain the shape of the curve, except for the very inner regions, and NGC 6822 is consequently very dark matter dominated. There is no evidence for the presence of a steep density cusp down to scales of ~20 pc, contrary to the predictions of Cold Dark Matter.Comment: Accepted for publication in MNRA

    Chandra Observations and the Nature of the Anomalous Arms of NGC 4258 (M 106)

    Get PDF
    This paper presents high resolution X-ray observations with Chandra of NGC 4258 and infers the nature of the so called ``anomalous arms'' in this galaxy. The anomalous arms dominate the X-ray image; diffuse X-ray emission from the ``plateaux'' regions, seen in radio and Hα\alpha imaging, is also found. X-ray spectra have been obtained at various locations along the anomalous arms and are well described by thermal (mekal) models with kT in the range 0.37 - 0.6 keV. The previously known kpc-scale radio jets are surrounded by cocoons of hot X-ray emitting gas for the first 350 pc of their length. The radio jets, seen in previous VLBA and VLA observations, propagate perpendicular to the compact nuclear gas disk (imaged in water vapor maser emission). The angle between the jets and the rotation axis of the galactic disk is 60∘^{\circ}. The jets shock the normal interstellar gas along the first 350 pc of their length, causing the hot, X-ray emitting cocoons noted above. At a height of z = 175 pc from the disk plane, the jets exit the normal gas disk and then propagate though the low density halo until they reach ``hot spots'' (at 870 pc and 1.7 kpc from the nucleus), which are seen in radio, optical line and X-ray emission. These jets must drive mass motions into the low density halo gas. This high velocity halo gas impacts on the dense galactic gas disk and shock heats it along and around a ``line of damage'', which is the projection of the jets onto the galactic gas disk as viewed down the galaxy disk rotation axis. However, because NGC 4258 is highly inclined (ii = 64∘^{\circ}), the ``line of damage'' projects on the sky in a different direction to the jets themselves. We calculate the expected p.a. of the ``line of damage'' on the sky and find that it coincides with the anomalous arms to within 2∘^{\circ}. (Abstract truncated).Comment: 12 pages plus 9 figures, to be published in the Astrophysical Journal, v560, nr 1, pt 1 (Oct 10, 2001 issue

    Cosmological Origin of the Stellar Velocity Dispersions in Massive Early-Type Galaxies

    Full text link
    We show that the observed upper bound on the line-of-sight velocity dispersion of the stars in an early-type galaxy, sigma<400km/s, may have a simple dynamical origin within the LCDM cosmological model, under two main hypotheses. The first is that most of the stars now in the luminous parts of a giant elliptical formed at redshift z>6. Subsequently, the stars behaved dynamically just as an additional component of the dark matter. The second hypothesis is that the mass distribution characteristic of a newly formed dark matter halo forgets such details of the initial conditions as the stellar "collisionless matter" that was added to the dense parts of earlier generations of halos. We also assume that the stellar velocity dispersion does not evolve much at z<6, because a massive host halo grows mainly by the addition of material at large radii well away from the stellar core of the galaxy. These assumptions lead to a predicted number density of ellipticals as a function of stellar velocity dispersion that is in promising agreement with the Sloan Digital Sky Survey data.Comment: ApJ, in press (2003); matches published versio

    Constraining global properties of the Draco dwarf spheroidal galaxy

    Full text link
    By fitting a flexible stellar anisotropy model to the observed surface brightness and line-of-sight velocity dispersion profiles of Draco we derive a sequence of cosmologically plausible two-component (stars + dark matter) models for this galaxy. The models are consistent with all the available observations and can have either cuspy Navarro-Frenk-White or flat-cored dark matter density profiles. The dark matter halos either formed relatively recently (at z~2...7) and are massive (up to ~5x10^9 M_Sun), or formed before the end of the reionization of the universe (z~7...11) and are less massive (down to ~7x10^7 M_Sun). Our results thus support either of the two popular solutions of the "missing satellites" problem of Lambda cold dark matter cosmology - that dwarf spheroidals are either very massive, or very old. We carry out high-resolution simulations of the tidal evolution of our two-component Draco models in the potential of the Milky Way. The results of our simulations suggest that the observable properties of Draco have not been appreciably affected by the Galactic tides after 10 Gyr of evolution. We rule out Draco being a "tidal dwarf" - a tidally disrupted dwarf galaxy. Almost radial Draco orbits (with the pericentric distance <15 kpc) are also ruled out by our analysis. The case of a harmonic dark matter core can be consistent with observations only for a very limited choice of Draco orbits (with the apocentric-to-pericentric distances ratio of <2.5).Comment: 18 pages, 14 figures; accepted by Ap

    The Sloan-Lens ACS Survey II: stellar populations and internal structure of early-type lens galaxies

    Get PDF
    We derive Fundamental Plane parameters of 15 early-type lens galaxies identified by the Sloan Lens ACS (SLACS) Survey. The size of the sample allows us to investigate for the first time the distribution of lens galaxies in the FP space. After correcting for evolution, we find that lens galaxies occupy a subset of the local FP. The edge-on projection (approximately M vs M/L) is indistinguishable from that of normal early-type galaxies. However -- within the fundamental plane -- the lens galaxies appear to concentrate at the edge of the region populated by normal early-type galaxies. We show that this is a result of our selection procedure (approximately velocity dispersion sigma>240km/s). We conclude that SLACS lenses are a fair sample of high velocity dispersion early-type galaxies. By comparing the central stellar velocity dispersion that of the best fit lens model, we find == =1.01+-0.02 with 0.065 rms scatter. We conclude that within the Einstein radii the SLACS lenses are very well approximated by isothermal ellipsoids, requiring a fine tuning of the stellar and dark matter distribution (bulge-halo ``conspiracy''). Interpreting the offset from the local FP in terms of evolution of the stellar mass-to-light ratio, we find for the SLACS lenses d log M/L_B/dz=-0.69+-0.08 (rms 0.11) consistent with the rate found for field early-type galaxies and with a scenario where most of the stars were formed at high redshift (>2) with secondary episodes of star formation providing less than ~10% of the stellar mass below z=1. We discuss star formation history and structural homogeneity in the context of formation mechanisms such as collisionless (``dry'') mergers. [Abridged]Comment: 2006, ApJ, 604, 622; 13 pages, 7 figures, 2 tables. Replaced Table 2, since the previous version was incorrectly sorted. Updated references. No changes in plots or content. More info available at SLACS website www.slacs.or

    The scale-free character of the cluster mass function and the universality of the stellar IMF

    Full text link
    Our recent determination of a Salpeter slope for the IMF in the field of 30 Doradus (Selman and Melnick 2005) appears to be in conflict with simple probabilistic counting arguments advanced in the past to support observational claims of a steeper IMF in the LMC field. In this paper we re-examine these arguments and show by explicit construction that, contrary to these claims, the field IMF is expected to be exactly the same as the stellar IMF of the clusters out of which the field was presumably formed. We show that the current data on the mass distribution of clusters themselves is in excellent agreement with our model, and is consistent with a single spectrum {\it by number of stars} of the type nÎČn^\beta with beta between -1.8 and -2.2 down to the smallest clusters without any preferred mass scale for cluster formation. We also use the random sampling model to estimate the statistics of the maximal mass star in clusters, and confirm the discrepancy with observations found by Weidner and Kroupa (2006). We argue that rather than signaling the violation of the random sampling model these observations reflect the gravitationally unstable nature of systems with one very large mass star. We stress the importance of the random sampling model as a \emph{null hypothesis} whose violation would signal the presence of interesting physics.Comment: 9 pages emulateap

    Substructure and halo density profiles in a Warm Dark Matter Cosmology

    Get PDF
    We performed a series of high-resolution simulations designed to study the substructure of Milky Way-size galactic halos (host halos) and the density profiles of halos in a warm dark matter (WDM) scenario with a non-vanishing cosmological constant. The virial masses of the host halos range from 3.5 x 10^12 to 1.7 x 10^12 solar masses and they have more than 10^5 particles each. A key feature of the WDM power spectrum is the free-streaming length R_f which fixes an additional parameter for the model of structure formation. We analyze the substructure of host halos using three R_f values: 0.2, 0.1, and 0.05 Mpc and compare results to the predictions of the cold dark matter (CDM) model. We find that guest halos (satellites) do form in the WDM scenario but are more easily destroyed by dynamical friction and tidal disruption than their counterparts in a CDM model. The small number of guest halos that we find within the virial radii of host halos at z = 0 in the WDM models is the result of a less efficient halo accretion and a higher satellite destruction rate. Under the assumption that each guest halo hosts a luminous galaxy, we find that the observed circular velocity function of satellites around the Milky Way and Andromeda is well described by the R_f = 0.1 Mpc WDM model. In the R_f = 0.1-0.2 Mpc models, the surviving subhalos at z=0 have an average concentration parameter c_1/5 which is approximately twice smaller than that of the corresponding CDM subhalos. This difference, very likely, produces the higher satellite destruction rate found in the WDM models. The density profile of host halos is well described by the NFW fit whereas guest halos show a wide variety of density profiles (abridged).Comment: Uses emulateapj.sty: 10 pages, 4 figures, ApJ accepted. Some changes have been introduced as suggested by the referee: (1) the description of the numerical simulations was sligthly modified to make it clearer, (2) the ellipticities of the host halos are now measured, and (3) the discussion section was divided in two subsections and enlarge

    Two dimensional bulge disk decomposition

    Get PDF
    We propose a two dimensional galaxy fitting algorithm to extract parameters of the bulge, disk, and a central point source from broad band images of galaxies. We use a set of realistic galaxy parameters to construct a large number of model galaxy images which we then use as input to our galaxy fitting program to test it. We find that our approach recovers all structural parameters to a fair degree of accuracy. We elucidate our procedures by extracting parameters for 3 real galaxies -- NGC 661, NGC 1381, and NGC 1427.Comment: 23 pages, LaTeX, AASTEX macros used, 7 Postscript figures, submitted to Ap

    Self-consistent models of triaxial galaxies in MOND gravity

    Full text link
    The Bekenstein-Milgrom gravity theory with a modified Poisson equation is tested here for the existence of triaxial equilibrium solutions. Using the non-negative least square method, we show that self-consistent triaxial galaxies exist for baryonic models with a mild density cusp ÏâˆŒÎŁr\rho \sim {\Sigma \over r}. Self-consistency is achieved for a wide range of central concentrations, ÎŁâˆŒ10−1000M⊙pc−2\Sigma \sim 10-1000\mathrm{M_{\odot}pc^{-2}}, representing low-to-high surface brightness galaxies. Our results demonstrate for the first time that the orbit superposition technique is fruitful for constructing galaxy models beyond Newtonian gravity, and triaxial cuspy galaxies might exist without the help of Cold dark Matter.Comment: 19 pages, 1 table, 7 figures, Accepted for publication in Ap
    • 

    corecore