847 research outputs found

    Pairing of charged particles in a quantum plasmoid

    Full text link
    We study a quantum spherically symmetric object which is based on radial plasma oscillations. Such a plasmoid is supposed to exist in a dense plasma containing electrons, ions, and neutral particles. The method of creation and annihilation operators is applied to quantize the motion of charged particles in a self-consistent potential. We also study the effective interaction between oscillating particles owing to the exchange of a virtual acoustic wave, which is excited in the neutral component of plasma. It is shown that this interaction can be attractive and result in the formation of ion pairs. We discuss possible applications of this phenomenon in astrophysical and terrestrial plasmas.Comment: 17 pages, no figures, two columns, LaTeX2e; paper was significantly revised; title was changed; 16 new references were included; the discussion on ion-acoustic waves was added to Sec. 2; Secs. 3 and 4 were shortened; a more detailed discussion was added to Sec. 7; accepted for publication to J.Phys.

    Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K

    Get PDF
    The second dissociation constants of the amino acids βalanine, taurine, sarcosine, 6-aminohexanoic acid, DL-methionine, glycine, L-phenylalanine, and L-proline and the third dissociation constants of L-glutamic acid and L-aspartic acid have been determined from electromotive force measurements at temperatures from (293 to 353) K. Experimental results are reported and compared to literature values. Values of the standard state thermodynamic properties are derived from the experimental results and compared to the values of commercially available amines used as absorbents for CO 2 capture.
    • …
    corecore