48 research outputs found
A Method for Analyzing the Ubiquitination and Degradation of Aurora-A
The cell cycle machinery consists of regulatory proteins that control the progression through the cell cycle ensuring that DNA replication alternates with DNA segregation in mitosis to maintain cell integrity. Some of these key regulators have to be degraded at each cell cycle to prevent cellular dysfunction. Mitotic exit requires the inactivation of cyclin dependent kinase1 (cdk1) and it is the degradation of the cyclin subunit that inactivates the kinase. Cyclin degradation has been well characterized and it was shown that it is ubiquitin proteasome pathway that leads to the elimination of cyclins. By now, many other regulatory proteins were shown to be degraded by the same pathway, among them members of the aurora kinase family, degraded many other regulatory proteins. Aurora kinases are involved in mitotic spindle formation as well as in cytokinesis. The abundance and activity of the kinase is precisely regulated during the cell cycle. To understand how proteolysis regulates transitions through the cell cycle we describe two assays for ubiquitination and degradation of xenopus aurora kinase A using extracts from xenopus eggs or somatic cell lines
Effect of venlafaxine on bone loss associated with ligature-induced periodontitis in Wistar rats
<p>Abstract</p> <p>Background</p> <p>The present study investigated the effects of venlafaxine, an antidepressant drug with immunoregulatory properties on the inflammatory response and bone loss associated with experimental periodontal disease (EPD).</p> <p>Materials and Methods</p> <p>Wistar rats were subjected to a ligature placement around the second upper left molar. The treated groups received orally venlafaxine (10 or 50 mg/kg) one hour before the experimental periodontal disease induction and daily for 10 days. Vehicle-treated experimental periodontal disease and a sham-operated (SO) controls were included. Bone loss was analyzed morphometrically and histopathological analysis was based on cell influx, alveolar bone, and cementum integrity. Lipid peroxidation quantification and immunohistochemistry to TNF-α and iNOS were performed.</p> <p>Results</p> <p>Experimental periodontal disease rats showed an intense bone loss compared to SO ones (SO = 1.61 ± 1.36; EPD = 4.47 ± 1.98 mm, p < 0.001) and evidenced increased cellular infiltration and immunoreactivity for TNF-α and iNOS. Venlafaxine treatment while at low dose (10 mg/kg) afforded no significant protection against bone loss (3.25 ± 1.26 mm), a high dose (50 mg/kg) caused significantly enhanced bone loss (6.81 ± 3.31 mm, p < 0.05). Venlafaxine effectively decreased the lipid peroxidation but showed no significant change in TNF-α or iNOS immunoreactivity.</p> <p>Conclusion</p> <p>The increased bone loss associated with high dose venlafaxine may possibly be a result of synaptic inhibition of serotonin uptake.</p
CENP-32 is required to maintain centrosomal dominance in bipolar spindle assembly
Centrosomes nucleate spindle formation, direct spindle pole positioning, and are important for proper chromosome segregation during mitosis in most animal cells. We previously reported that centromere protein 32 (CENP-32) is required for centrosome association with spindle poles during metaphase. In this study, we show that CENP-32 depletion seems to release centrosomes from bipolar spindles whose assembly they had previously initiated. Remarkably, the resulting anastral spindles function normally, aligning the chromosomes to a metaphase plate and entering anaphase without detectable interference from the free centrosomes, which appear to behave as free asters in these cells. The free asters, which contain reduced but significant levels of CDK5RAP2, show weak interactions with spindle microtubules but do not seem to make productive attachments to kinetochores. Thus CENP-32 appears to be required for centrosomes to integrate into a fully functional spindle that not only nucleates astral microtubules, but also is able to nucleate and bind to kinetochore and central spindle microtubules. Additional data suggest that NuMA tethers microtubules at the anastral spindle poles and that augmin is required for centrosome detachment after CENP-32 depletion, possibly due to an imbalance of forces within the spindle