11,799 research outputs found
Local Volume Effects in the Generalized Pseudopotential Theory
The generalized pseudopotential theory (GPT) is a powerful method for
deriving real-space transferable interatomic potentials. Using a coarse-grained
electronic structure, one can explicitly calculate the pair ion-ion and
multi-ion interactions in simple and transition metals. Whilst successful in
determining bulk properties, in central force metals the GPT fails to describe
crystal defects for which there is a significant local volume change. A
previous paper [PhysRevLett.66.3036 (1991)] found that by allowing the GPT
total energy to depend upon some spatially-averaged local electron density, the
energetics of vacancies and surfaces could be calculated within experimental
ranges. In this paper, we develop the formalism further by explicitly
calculating the forces and stress tensor associated with this total energy. We
call this scheme the adaptive GPT (aGPT) and it is capable of both molecular
dynamics and molecular statics. We apply the aGPT to vacancy formation and
divacancy binding in hcp Mg and also calculate the local electron density
corrections to the bulk elastic constants and phonon dispersion for which there
is refinement over the baseline GPT treatment.Comment: 11 pages, 6 figure
A Persistent High-Energy Flux from the Heart of the Milky Way : Integral's view of the Galactic Center
The Ibis/Isgri imager on Integral detected for the first time a hard X-ray
source, IGR J17456-2901, located within 1' of Sgr A* over the energy range
20-100 keV. Here we present the results of a detailed analysis of ~7 Ms of
Integral observations of the GC. With an effective exposure of 4.7 Ms we have
obtained more stringent positional constraints on this HE source and
constructed its spectrum in the range 20-400 keV. Furthermore, by combining the
Isgri spectrum with the total X-ray spectrum corresponding to the same physical
region around SgrA* from XMM data, and collected during part of the Integral
observations, we constructed and present the first accurate wide band HE
spectrum for the central arcmins of the Galaxy. Our complete analysis of the
emission properties of IGR shows that it is faint but persistent with no
variability above 3 sigma contrary to what was alluded to in our first paper.
This result, in conjunction with the spectral characteristics of the X-ray
emission from this region, suggests that the source is most likely not
point-like but, rather, that it is a compact, yet diffuse, non-thermal emission
region. The centroid of IGR is estimated to be R.A.=17h45m42.5,
decl.=-28deg59'28'', offset by 1' from the radio position of Sgr A* and with a
positional uncertainty of 1'. Its 20-400 keV luminosity at 8 kpc is L=5.4x10^35
erg/sec. Very recently, Hess detected of a source of ~TeV g-rays also located
within 1' of Sgr A*. We present arguments in favor of an interpretation
according to which the photons detected by Integral and Hess arise from the
same compact region of diffuse emission near the central BH and that the
supernova remnant Sgr A East could play an important role as a contributor of
very HE g-rays to the overall spectrum from this region.Comment: 14 pages, 11 figures, Accepted for publication in Ap
A model of large volumetric capacitance in graphene supercapacitors based on ion clustering
Electric double layer supercapacitors are promising devices for high-power
energy storage based on the reversible absorption of ions into porous,
conducting electrodes. Graphene is a particularly good candidate for the
electrode material in supercapacitors due to its high conductivity and large
surface area. In this paper we consider supercapacitor electrodes made from a
stack of graphene sheets with randomly-inserted "spacer" molecules. We show
that the large volumetric capacitances C > 100 F/cm^3 observed experimentally
can be understood as a result of collective intercalation of ions into the
graphene stack and the accompanying nonlinear screening by graphene electrons
that renormalizes the charge of the ion clusters.Comment: 13 pages, 5 figures; additional discussion and supporting
calculations adde
Localization dynamics of fluids in random confinement
The dynamics of two-dimensional fluids confined within a random matrix of
obstacles is investigated using both colloidal model experiments and molecular
dynamics simulations. By varying fluid and matrix area fractions in the
experiment, we find delocalized tracer particle dynamics at small matrix area
fractions and localized motion of the tracers at high matrix area fractions. In
the delocalized region, the dynamics is subdiffusive at intermediate times, and
diffusive at long times, while in the localized regime, trapping in finite
pockets of the matrix is observed. These observations are found to agree with
the simulation of an ideal gas confined in a weakly correlated matrix. Our
results show that Lorentz gas systems with soft interactions are exhibiting a
smoothening of the critical dynamics and consequently a rounded
delocalization-to-localization transition.Comment: 5 pages, 3 figure
Unbiased bases (Hadamards) for 6-level systems: Four ways from Fourier
In quantum mechanics some properties are maximally incompatible, such as the
position and momentum of a particle or the vertical and horizontal projections
of a 2-level spin. Given any definite state of one property the other property
is completely random, or unbiased. For N-level systems, the 6-level ones are
the smallest for which a tomographically efficient set of N+1 mutually unbiased
bases (MUBs) has not been found. To facilitate the search, we numerically
extend the classification of unbiased bases, or Hadamards, by incrementally
adjusting relative phases in a standard basis. We consider the non-unitarity
caused by small adjustments with a second order Taylor expansion, and choose
incremental steps within the 4-dimensional nullspace of the curvature. In this
way we prescribe a numerical integration of a 4-parameter set of Hadamards of
order 6.Comment: 5 pages, 2 figure
Theory of hopping conduction in arrays of doped semiconductor nanocrystals
The resistivity of a dense crystalline array of semiconductor nanocrystals
(NCs) depends in a sensitive way on the level of doping as well as on the NC
size and spacing. The choice of these parameters determines whether electron
conduction through the array will be characterized by activated
nearest-neighbor hopping or variable-range hopping (VRH). Thus far, no general
theory exists to explain how these different behaviors arise at different
doping levels and for different types of NCs. In this paper we examine a simple
theoretical model of an array of doped semiconductor NCs that can explain the
transition from activated transport to VRH. We show that in sufficiently small
NCs, the fluctuations in donor number from one NC to another provide sufficient
disorder to produce charging of some NCs, as electrons are driven to vacate
higher shells of the quantum confinement energy spectrum. This
confinement-driven charging produces a disordered Coulomb landscape throughout
the array and leads to VRH at low temperature. We use a simple computer
simulation to identify different regimes of conduction in the space of
temperature, doping level, and NC diameter. We also discuss the implications of
our results for large NCs with external impurity charges and for NCs that are
gated electrochemically.Comment: 14 pages, 10 figures; extra schematic figures added; revised
introductio
The problem of shot selection in basketball
In basketball, every time the offense produces a shot opportunity the player
with the ball must decide whether the shot is worth taking. In this paper, I
explore the question of when a team should shoot and when they should pass up
the shot by considering a simple theoretical model of the shot selection
process, in which the quality of shot opportunities generated by the offense is
assumed to fall randomly within a uniform distribution. I derive an answer to
the question "how likely must the shot be to go in before the player should
take it?", and show that this "lower cutoff" for shot quality depends
crucially on the number of shot opportunities remaining (say, before the
shot clock expires), with larger demanding that only higher-quality shots
should be taken. The function is also derived in the presence of a
finite turnover rate and used to predict the shooting rate of an
optimal-shooting team as a function of time. This prediction is compared to
observed shooting rates from the National Basketball Association (NBA), and the
comparison suggests that NBA players tend to wait too long before shooting and
undervalue the probability of committing a turnover.Comment: 7 pages, 2 figures; comparison to NBA data adde
- âŠ