31,233 research outputs found

    Bose-Einstein Condensates in Superlattices

    Get PDF
    We consider the Gross--Pitaevskii (GP) equation in the presence of periodic and quasi-periodic superlattices to study cigar-shaped Bose--Einstein condensates (BECs) in such potentials. We examine spatially extended wavefunctions in the form of modulated amplitude waves (MAWs). With a coherent structure ansatz, we derive amplitude equations describing the evolution of spatially modulated states of the BEC. We then apply second-order multiple scale perturbation theory to study harmonic resonances with respect to a single lattice substructure as well as ultrasubharmonic resonances that result from interactions of both substructures of the superlattice. In each case, we determine the resulting system's equilibria, which represent spatially periodic solutions, and subsequently examine the stability of the corresponding wavefunctions by direct simulations of the GP equation, identifying them as typically stable solutions of the model. We then study subharmonic resonances using Hamiltonian perturbation theory, tracing robust spatio-temporally periodic patterns

    A New Look at Neon-C and SEP-Neon

    Get PDF
    Studies of the isotopic composition of neon in lunar soils, meteorites, and interplanetary dust particles have revealed several distinct components. In addition to implanted solar wind, which has a ^(20)Ne/^(22)Ne-abundance ratio of 13.7, there is an additional component with ^(20)Ne/^(22)Ne≈11.2, originally attributed to higher-energy solar energetic particles. Using data from the Advanced Composition Explorer, we have measured the fluence of solar wind, suprathermal particles, solar energetic particles and cosmic rays from ~0.3 keV/nucleon to ~300 MeV/nucleon over an extended time period. We use these measured spectra to simulate the present-day depth distribution of Ne isotopes implanted in the lunar soil. We find that the suprathermal tail of the solar wind, extending from a few keV/nucleon to several MeV/nucleon with a power law spectrum, can produce ^(20)Ne/^(22)Ne abundance ratios in the lunar soil that are similar to the measured composition, although there remain significant questions about the extent to which the present-day intensity of suprathermal ions is sufficient to explain the lunar observations

    Abundances of Suprathermal Heavy Ions in CIRs during the Minimum of Solar Cycle 23

    Full text link
    In this paper we examine the elemental composition of the 0.1-1 MeV/nucleon interplanetary heavy ions from H to Fe in corotating interaction regions (CIRs) measured by the SIT (Suprathermal Ion Telescope) instrument. We use observations taken on board the STEREO spacecraft from January 2007 through December 2010, which included the unusually long solar minimum following solar cycle 23. During this period instruments on STEREO observed more than 50 CIR events making it possible to investigate CIR ion abundances during solar minimum conditions with unprecedented high statistics. The observations reveal annual variations of relative ion abundances in the CIRs during the 2007-2008 period as indicated by the He/H, He/O and Fe/O elemental ratios. We discuss possible causes of the variability in terms of the helium focusing cone passage and heliolatitude dependence. The year 2009 was very quiet in CIR event activity. In 2010 the elemental composition in CIRs were influenced by sporadic solar energetic particle (SEP) events. The 2010 He/H and He/O abundance ratios in CIRs show large event to event variations with values resembling the SEP-like composition. This finding points out that the suprathermal SEPs could be the source population for CIR acceleration.Comment: accepted for publication in Solar Physic

    Nonadditivity of intermolecular forces - Effects on the third virial coefficient

    Get PDF
    Effects of nonadditive three body forces on third virial coefficien

    Heat Conductivity of Polyatomic and Polar Gases and Gas Mixtures

    Get PDF
    Theory for calculating heat conductivity of polyatomic and polar gases and gas mixture

    Modulated Amplitude Waves in Collisionally Inhomogeneous Bose-Einstein Condensates

    Get PDF
    We investigate the dynamics of an effectively one-dimensional Bose-Einstein condensate (BEC) with scattering length aa subjected to a spatially periodic modulation, a=a(x)=a(x+L)a=a(x)=a(x+L). This "collisionally inhomogeneous" BEC is described by a Gross-Pitaevskii (GP) equation whose nonlinearity coefficient is a periodic function of xx. We transform this equation into a GP equation with constant coefficient aa and an additional effective potential and study a class of extended wave solutions of the transformed equation. For weak underlying inhomogeneity, the effective potential takes a form resembling a superlattice, and the amplitude dynamics of the solutions of the constant-coefficient GP equation obey a nonlinear generalization of the Ince equation. In the small-amplitude limit, we use averaging to construct analytical solutions for modulated amplitude waves (MAWs), whose stability we subsequently examine using both numerical simulations of the original GP equation and fixed-point computations with the MAWs as numerically exact solutions. We show that "on-site" solutions, whose maxima correspond to maxima of a(x)a(x), are significantly more stable than their "off-site" counterparts.Comment: 25 pages, 10 figures (many with several parts), to appear in Physica D; higher resolution versions of some figures are available at http://www.its.caltech.edu/~mason/paper
    • …
    corecore