2,318 research outputs found
The Correlation Function of Rich Clusters of Galaxies in CDM-like Models
We use ensembles of high-resolution CDM simulations to investigate the shape
and amplitude of the two point correlation function of rich clusters. The
standard scale-invariant CDM model with provides a poor description
of the clustering measured from the APM rich cluster redshift survey, which is
better fitted by models with more power at large scales. The amplitudes of the
rich cluster correlation functions measured from our models depend weakly on
cluster richness. Analytic calculations of the clustering of peaks in a
Gaussian density field overestimate the amplitude of the N-body cluster
correlation functions, but reproduce qualitatively the weak trend with cluster
richness. Our results suggest that the high amplitude measured for the
correlation function of richness class Abell clusters is either an
artefact arising from incompleteness in the Abell catalogue, or an indication
that the density perturbations in the early universe were very non-Gaussian.Comment: uuencoded compressed postscript ,MNRAS, in press, OUAST-93-1
Anthropic versus cosmological solutions to the coincidence problem
In this paper we investigate possible solutions to the coincidence problem in
flat phantom dark energy models with a constant dark energy equation of state
and quintessence models with a linear scalar field potential. These models are
representative of a broader class of cosmological scenarios in which the
universe has a finite lifetime. We show that, in the absence of anthropic
constraints, including a prior probability for the models inversely
proportional to the total lifetime of the universe excludes models very close
to the model. This relates a cosmological solution to the
coincidence problem with a dynamical dark energy component having an equation
of state parameter not too close to -1 at the present time. We further show,
that anthropic constraints, if they are sufficiently stringent, may solve the
coincidence problem without the need for dynamical dark energy.Comment: 7 pages, 7 figure
Evolution of the Pairwise Peculiar Velocity Distribution Function in Lagrangian Perturbation Theory
The statistical distribution of the radial pairwise peculiar velocity of
galaxies is known to have an exponential form as implied by observations and
explicitly shown in N-body simulations. Here we calculate its statistical
distribution function using the Zel'dovich approximation assuming that the
primordial density fluctuations are Gaussian distributed. We show that the
exponential distribution is realized as a transient phenomena on megaparsec
scales in the standard cold-dark-matter model.Comment: 19 pages, 8 Postscript figures, AAS LaTe
The mass function
We present the mass functions for different mass estimators for a range of
cosmological models. We pay particular attention to how universal the mass
function is, and how it depends on the cosmology, halo identification and mass
estimator chosen. We investigate quantitatively how well we can relate observed
masses to theoretical mass functions.Comment: 14 pages, 12 figures, to appear in ApJ
Luminosity density estimation from redshift surveys and the mass density of the Universe
In most direct estimates of the mass density (visible or dark) of the
Universe, a central input parameter is the luminosity density of the Universe.
Here we consider the measurement of this luminosity density from red-shift
surveys, as a function of the yet undetermined characteristic scale R_H at
which the spatial distribution of visible matter tends to a well defined
homogeneity. Making the canonical assumption that the cluster mass to
luminosity ratio M/L is the universal one, we can estimate the total mass
density as a function \Omega_m(R_H,M/L). Taking the highest estimated cluster
value M/L ~300h and a conservative lower limit R_H > 20 Mpc/h, we obtain the
upper bound \Omega_m < 0.1 . We note that for values of the homogeneity scale
R_H in the range R_H ~ (90 +/- 45) hMpc, the value of \Omega_m may be
compatible with the nucleosynthesis inferred density in baryons.Comment: 16 pages, latex, no figures. To be published in Astrophysical Journal
Letter
Properties and use of CMB power spectrum likelihoods
Fast robust methods for calculating likelihoods from CMB observations on
small scales generally rely on approximations based on a set of power spectrum
estimators and their covariances. We investigate the optimality of these
approximation, how accurate the covariance needs to be, and how to estimate the
covariance from simulations. For a simple case with azimuthal symmetry we
compare optimality of hybrid pseudo-C_l CMB power spectrum estimators with the
exact result, indicating that the loss of information is not negligible, but
neither is it enough to have a large effect on standard parameter constraints.
We then discuss the number of samples required to estimate the covariance from
simulations, with and without a good analytic approximation, and assess the use
of shrinkage estimators. Finally we discuss how to combine an approximate
high-ell likelihood with a more exact low-ell harmonic-space likelihood as a
practical method for accurate likelihood calculation on all scales.Comment: 15 pages, 11 figures; updated to match version accepted by PR
An Isocurvature CDM Cosmogony. I. A Worked Example of Evolution Through Inflation
I present a specific worked example of evolution through inflation to the
initial conditions for an isocurvature CDM model for structure formation. The
model invokes three scalar fields, one that drives power law inflation, one
that survives to become the present-day CDM, and one that gives the CDM field a
mass that slowly decreases during inflation and so ``tilts'' the primeval mass
fluctuation spectrum of the CDM. The functional forms for the potentials and
the parameter values that lead to an observationally acceptable model for
structure formation do not seem to be out of line with current ideas about the
physics of the very early universe. I argue in an accompanying paper that the
model offers an acceptable fit to main observational constraints.Comment: 11 pages, 3 postscript figures, uses aas2pp4.st
Fundamental Discreteness Limitations of Cosmological N-Body Clustering Simulations
We explore some of the effects that discreteness and two-body scattering may
have on N-body simulations with ``realistic'' cosmological initial conditions.
We use an identical subset of particles from the initial conditions for a
Particle-Mesh (PM) calculation as the initial conditions for a variety
PM and Tree code runs. We investigate the effect of mass resolution (the
mean interparticle separation) since most ``high resolution'' codes only have
high resolution in gravitational force. The phase-insensitive two--point
statistics, such as the power spectrum (autocorrelation) are somewhat affected
by these variations, but phase-sensitive statistics show greater differences.
Results converge at the mean interparticle separation scale of the lowest
mass-resolution code. As more particles are added, but the force resolution is
held constant, the PM and the Tree runs agree more and more strongly with
each other and with the PM run which had the same initial conditions. This
shows high particle density is necessary for correct time evolution, since many
different results cannot all be correct. However, they do not so converge to a
PM run which continued the fluctuations to small scales. Our results show that
ignoring them is a major source of error on comoving scales of the missing
wavelengths. This can be resolved by putting in a high particle density. Since
the codes never agree well on scales below the mean comoving interparticle
separation, we find little justification for quantitative predictions on this
scale. Some measures vary by 50%, but others can be off by a factor of three or
more. Our results suggest possible problems with the density of galaxy halos,
formation of early generation objects such as QSO absorber clouds, etc.Comment: Revised version to be published in Astrophysical Journal. One figure
changed; expanded discussion, more information on code parameters. Latex, 44
pages, including 19 figures. Higher resolution versions of Figures 10-15
available at: ftp://kusmos.phsx.ukans.edu/preprints/nbod
Formation of early-type galaxies from cosmological initial conditions
We describe high resolution Smoothed Particle Hydrodynamics (SPH) simulations
of three approximately field galaxies starting from \LCDM initial
conditions. The simulations are made intentionally simple, and include
photoionization, cooling of the intergalactic medium, and star formation but
not feedback from AGN or supernovae. All of the galaxies undergo an initial
burst of star formation at , accompanied by the formation of a
bubble of heated gas. Two out of three galaxies show early-type properties at
present whereas only one of them experienced a major merger. Heating from
shocks and -PdV work dominates over cooling so that for most of the gas the
temperature is an increasing function of time. By a significant
fraction of the final stellar mass is in place and the spectral energy
distribution resembles those of observed massive red galaxies. The galaxies
have grown from on average by 25% in mass and in size by gas poor
(dry) stellar mergers. By the present day, the simulated galaxies are old
(), kinematically hot stellar systems surrounded by hot
gaseous haloes. Stars dominate the mass of the galaxies up to
effective radii ( kpc). Kinematic and most photometric properties
are in good agreement with those of observed elliptical galaxies. The galaxy
with a major merger develops a counter-rotating core. Our simulations show that
realistic intermediate mass giant elliptical galaxies with plausible formation
histories can be formed from \LCDM initial conditions even without requiring
recent major mergers or feedback from supernovae or AGN.Comment: accepted for publication in Ap
- …