17,984 research outputs found

    A discrete nonlinear model with substrate feedback

    Full text link
    We consider a prototypical model in which a nonlinear field (continuum or discrete) evolves on a flexible substrate which feeds back to the evolution of the main field. We identify the underlying physics and potential applications of such a model and examine its simplest one-dimensional Hamiltonian form, which turns out to be a modified Frenkel-Kontorova model coupled to an extra linear equation. We find static kink solutions and study their stability, and then examine moving kinks (the continuum limit of the model is studied too). We observe how the substrate effectively renormalizes properties of the kinks. In particular, a nontrivial finding is that branches of stable and unstable kink solutions may be extended beyond a critical point at which an effective intersite coupling vanishes; passing this critical point does not destabilize the kink. Kink-antikink collisions are also studied, demonstrating alternation between merger and transmission cases.Comment: a revtex text file and 6 ps files with figures. Physical Review E, in pres

    Pairing in Inhomogeneous Superconductors

    Full text link
    Starting from a t-J model, we introduce inhomogeneous terms to mimic stripes. We find that if the inhomogeneous terms break the SU(2) spin symmetry the binding between holes is tremendously enhanced in the thermodynamic limit. In any other model (including homogeneous models) the binding in the thermodynamic limit is small or neglible. By including these inhomogeneous terms we can reproduce experimental neutron scattering data. We also discuss the connection of the resulting inhomogeneity-induced superconductivity to recent experimental evidence for a linear relation between magnetic incommensurability and the superconducting transition temperature, as a function of doping.Comment: 4 pages, 2 figure

    Discrete Breathers in a Nonlinear Polarizability Model of Ferroelectrics

    Full text link
    We present a family of discrete breathers, which exists in a nonlinear polarizability model of ferroelectric materials. The core-shell model is set up in its non-dimensionalized Hamiltonian form and its linear spectrum is examined. Subsequently, seeking localized solutions in the gap of the linear spectrum, we establish that numerically exact and potentially stable discrete breathers exist for a wide range of frequencies therein. In addition, we present nonlinear normal mode, extended spatial profile solutions from which the breathers bifurcate, as well as other associated phenomena such as the formation of phantom breathers within the model. The full bifurcation picture of the emergence and disappearance of the breathers is complemented by direct numerical simulations of their dynamical instability, when the latter arises.Comment: 9 pages, 7 figures, 1 tabl

    Spectral signatures of the Luttinger liquid to charge-density-wave transition

    Full text link
    Electron- and phonon spectral functions of the one-dimensional, spinless-fermion Holstein model at half filling are calculated in the four distinct regimes of the phase diagram, corresponding to an attractive or repulsive Luttinger liquid at weak electron-phonon coupling, and a band- or polaronic insulator at strong coupling. The results obtained by means of kernel polynomial and systematic cluster approaches reveal substantially different physics in these regimes and further indicate that the size of the phonon frequency significantly affects the nature of the quantum Peierls phase transition.Comment: 5 pages, 4 figures; final version, accepted for publication in Physical Review
    • …
    corecore