3,602 research outputs found
Right-Permutative Cellular Automata on Topological Markov Chains
In this paper we consider cellular automata with
algebraic local rules and such that is a topological Markov
chain which has a structure compatible to this local rule. We characterize such
cellular automata and study the convergence of the Ces\`aro mean distribution
of the iterates of any probability measure with complete connections and
summable decay.Comment: 16 pages, 2 figure. A new version with improved redaction of Theorem
6.3(i)) to clearify its consequence
Conservation Laws in Cellular Automata
If X is a discrete abelian group and B a finite set, then a cellular
automaton (CA) is a continuous map F:B^X-->B^X that commutes with all X-shifts.
If g is a real-valued function on B, then, for any b in B^X, we define G(b) to
be the sum over all x in X of g(b_x) (if finite). We say g is `conserved' by F
if G is constant under the action of F. We characterize such `conservation
laws' in several ways, deriving both theoretical consequences and practical
tests, and provide a method for constructing all one-dimensional CA exhibiting
a given conservation law.Comment: 19 pages, LaTeX 2E with one (1) Encapsulated PostScript figure. To
appear in Nonlinearity. (v2) minor changes/corrections; new references added
to bibliograph
Symmetry groupoids and patterns of synchrony in coupled cell networks
A coupled cell system is a network of dynamical systems, or “cells,” coupled together. Such systems
can be represented schematically by a directed graph whose nodes correspond to cells and whose
edges represent couplings. A symmetry of a coupled cell system is a permutation of the cells that
preserves all internal dynamics and all couplings. Symmetry can lead to patterns of synchronized
cells, rotating waves, multirhythms, and synchronized chaos. We ask whether symmetry is the only
mechanism that can create such states in a coupled cell system and show that it is not.
The key idea is to replace the symmetry group by the symmetry groupoid, which encodes information
about the input sets of cells. (The input set of a cell consists of that cell and all cells
connected to that cell.) The admissible vector fields for a given graph—the dynamical systems with
the corresponding internal dynamics and couplings—are precisely those that are equivariant under
the symmetry groupoid. A pattern of synchrony is “robust” if it arises for all admissible vector
fields. The first main result shows that robust patterns of synchrony (invariance of “polydiagonal”
subspaces under all admissible vector fields) are equivalent to the combinatorial condition that an
equivalence relation on cells is “balanced.” The second main result shows that admissible vector
fields restricted to polydiagonal subspaces are themselves admissible vector fields for a new coupled
cell network, the “quotient network.” The existence of quotient networks has surprising implications
for synchronous dynamics in coupled cell systems
Risky social choice with approximate interpersonal comparisons of well-being
We develop a model of social choice over lotteries, where people's psychological characteristics are mutable, their preferences may be incomplete, and approximate interpersonal comparisons of well-being are possible. Formally, we suppose individual preferences are described by a von~Neumann-Morgenstern (vNM) preference order on a space of lotteries over psychophysical states; the social planner must construct a vNM preference order on lotteries over social states. First we consider a model when the individual vNM preference order is incomplete (so not all interpersonal comparisons are possible). Then we consider a model where the individual vNM preference order is complete, but unknown to the planner, and thus modeled by a random variable. In both cases, we obtain characterizations of a utilitarian social welfare function
Limit Measures for Affine Cellular Automata, II
If M is a monoid (e.g. the lattice Z^D), and A is an abelian group, then A^M
is a compact abelian group; a linear cellular automaton (LCA) is a continuous
endomorphism F:A^M --> A^M that commutes with all shift maps. If F is
diffusive, and mu is a harmonically mixing (HM) probability measure on A^M,
then the sequence {F^N mu} (N=1,2,3,...) weak*-converges to the Haar measure on
A^M, in density. Fully supported Markov measures on A^Z are HM, and nontrivial
LCA on A^{Z^D} are diffusive when A=Z/p is a prime cyclic group.
In the present work, we provide sufficient conditions for diffusion of LCA on
A^{Z^D} when A=Z/n is any cyclic group or when A=[Z/(p^r)]^J (p prime). We show
that any fully supported Markov random field on A^{Z^D} is HM (where A is any
abelian group).Comment: LaTeX2E Format, 20 pages, 1 LaTeX figure, 2 EPS figures, to appear in
Ergodic Theory and Dynamical Systems, submitted April 200
- …