10,023 research outputs found
The Darkies\u27 Cradle Song
https://digitalcommons.library.umaine.edu/mmb-vp/4649/thumbnail.jp
Temporal Ordering in Quantum Mechanics
We examine the measurability of the temporal ordering of two events, as well
as event coincidences. In classical mechanics, a measurement of the
order-of-arrival of two particles is shown to be equivalent to a measurement
involving only one particle (in higher dimensions). In quantum mechanics, we
find that diffraction effects introduce a minimum inaccuracy to which the
temporal order-of-arrival can be determined unambiguously. The minimum
inaccuracy of the measurement is given by dt=1/E where E is the total kinetic
energy of the two particles. Similar restrictions apply to the case of
coincidence measurements. We show that these limitations are much weaker than
limitations on measuring the time-of-arrival of a particle to a fixed location.Comment: New section added, arguing that order-of-arrival can be measured more
accurately than time-of-arrival. To appear in Journal of Physics
Letters between W. J. Kerr and G. C. Wheeler
Letters concerning filling Professor Dryden\u27s position at the Utah Agricultural College
A Liquid Model Analogue for Black Hole Thermodynamics
We are able to characterize a 2--dimensional classical fluid sharing some of
the same thermodynamic state functions as the Schwarzschild black hole. This
phenomenological correspondence between black holes and fluids is established
by means of the model liquid's pair-correlation function and the two-body
atomic interaction potential. These latter two functions are calculated exactly
in terms of the black hole internal (quasilocal) energy and the isothermal
compressibility. We find the existence of a ``screening" like effect for the
components of the liquid.Comment: 20 pages and 6 Encapsulated PostScript figure
Cerebrospinal fluid levels of extracellular heat shock protein 72: A potential biomarker for bacterial meningitis in children
Extracellular heat shock protein 72 (Hsp72) is an endogenous danger signal and potential biomarker for critical illness in children. We hypothesized that elevated levels of extracellular Hsp72 in the cerebrospinal fluid (CSF) of children with suspected meningitis could predict bacterial meningitis. We measured extracellular Hsp72 levels in the CSF of 31 critically ill children with suspected meningitis via a commercially available enzyme-linked immunosorbent assay. Fourteen had bacterial meningitis based on CSF pleocytosis and bacterial growth in either blood or CSF culture. Seventeen children with negative cultures comprised the control group. CSF Hsp72 was significantly elevated in children with bacterial meningitis compared to controls. Importantly, CSF Hsp72 levels did not correlate with the CSF white blood cell count. On receiver operator characteristic analysis, using a cut-off of 8.1 ng/mL, CSF Hsp72 has a sensitivity of 79% and a specificity of 94% for predicting bacterial meningitis. We therefore conclude that CSF extracellular Hsp72 levels are elevated in critically ill children with bacterial meningitis versus controls. Hsp72 potentially offers clinicians improved diagnostic information in distinguishing bacterial meningitis from other processes
Heavy ion beam lifetimes at relativistic and ultrarelativistic colliders
The effects of higher order corrections in ultra-relativistic nuclear
collisions are considered. It is found that higher order contributions are
small at low energy, large at intermediate energy and small again at very high
energy. An explanation for this effect is given. This means that the
Weizsacker-Williams formula is a good approximation to use in calculating cross
sections and beam lifetimes at energies relevant to RHIC and LHC.Comment: 10 pages, 2 tables, 4 figure
Finite-time quantum-to-classical transition for a Schroedinger-cat state
The transition from quantum to classical, in the case of a quantum harmonic
oscillator, is typically identified with the transition from a quantum
superposition of macroscopically distinguishable states, such as the
Schr\"odinger cat state, into the corresponding statistical mixture. This
transition is commonly characterized by the asymptotic loss of the interference
term in the Wigner representation of the cat state. In this paper we show that
the quantum to classical transition has different dynamical features depending
on the measure for nonclassicality used. Measures based on an operatorial
definition have well defined physical meaning and allow a deeper understanding
of the quantum to classical transition. Our analysis shows that, for most
nonclassicality measures, the Schr\"odinger cat dies after a finite time.
Moreover, our results challenge the prevailing idea that more macroscopic
states are more susceptible to decoherence in the sense that the transition
from quantum to classical occurs faster. Since nonclassicality is prerequisite
for entanglement generation our results also bridge the gap between
decoherence, which appears to be only asymptotic, and entanglement, which may
show a sudden death. In fact, whereas the loss of coherences still remains
asymptotic, we have shown that the transition from quantum to classical can
indeed occur at a finite time.Comment: 9+epsilon pages, 4 figures, published version. Originally submitted
as "Sudden death of the Schroedinger cat", a bit too cool for APS policy :-
Phase field modeling of electrochemistry II: Kinetics
The kinetic behavior of a phase field model of electrochemistry is explored
for advancing (electrodeposition) and receding (electrodissolution) conditions
in one dimension. We described the equilibrium behavior of this model in [J. E.
Guyer, W. J. Boettinger, J.A. Warren, and G. B. McFadden, ``Phase field
modeling of electrochemistry I: Equilibrium'', cond-mat/0308173]. We examine
the relationship between the parameters of the phase field method and the more
typical parameters of electrochemistry. We demonstrate ohmic conduction in the
electrode and ionic conduction in the electrolyte. We find that, despite making
simple, linear dynamic postulates, we obtain the nonlinear relationship between
current and overpotential predicted by the classical ``Butler-Volmer'' equation
and observed in electrochemical experiments. The charge distribution in the
interfacial double layer changes with the passage of current and, at
sufficiently high currents, we find that the diffusion limited deposition of a
more noble cation leads to alloy deposition with less noble species.Comment: v3: To be published in Phys. Rev. E v2: Attempt to work around
turnpage bug. Replaced color Fig. 4a with grayscale 13 pages, 7 figures in 10
files, REVTeX 4, SIunits.sty, follows cond-mat/030817
- …