191,429 research outputs found

    Filtering and control for unreliable communication: The discrete-time case

    Get PDF
    Copyright Β© 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the past decades, communication networks have been extensively employed in many practical control systems, such as manufacturing plants, aircraft, and spacecraft to transmit information and control signals between the system components. When a control loop is closed via a serial communication channel, a networked control system (NCS) is formed. NCSs have become very popular for their great advantages over traditional systems (e.g., low cost, reduced weight, and power requirements, etc.). Generally, it has been implicitly assumed that the communication between the system components is perfect; that is, the signals transmitted from the plant always arrive at the filter or controller without any information loss. Unfortunately, such an assumption is not always true. For example, a common feature of the NCSs is the presence of significant network-induced delays and data losses across the networks. Therefore, an emerging research topic that has recently drawn much attention is how to cope with the effect of network-induced phenomena due to the unreliability of the network communication. This special issue aims at bringing together the latest approaches to understand, filter, and control for discrete-time systems under unreliable communication. Potential topics include but are not limited to (a) multiobjective filtering or control, (b) network-induced phenomena, (c) stability analysis, (d) robustness and fragility, and (e) applications in real-world discrete-time systems

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    A survey on gain-scheduled control and filtering for parameter-varying systems

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This paper presents an overview of the recent developments in the gain-scheduled control and filtering problems for the parameter-varying systems. First of all, we recall several important algorithms suitable for gain-scheduling method including gain-scheduled proportional-integral derivative (PID) control, H 2, H ∞ and mixed H 2 / H ∞ gain-scheduling methods as well as fuzzy gain-scheduling techniques. Secondly, various important parameter-varying system models are reviewed, for which gain-scheduled control and filtering issues are usually dealt with. In particular, in view of the randomly occurring phenomena with time-varying probability distributions, some results of our recent work based on the probability-dependent gain-scheduling methods are reviewed. Furthermore, some latest progress in this area is discussed. Finally, conclusions are drawn and several potential future research directions are outlined.The National Natural Science Foundation of China under Grants 61074016, 61374039, 61304010, and 61329301; the Natural Science Foundation of Jiangsu Province of China under Grant BK20130766; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; the Program for New Century Excellent Talents in University under Grant NCET-11-1051, the Leverhulme Trust of the U.K., the Alexander von Humboldt Foundation of Germany
    • …
    corecore