190 research outputs found

    Magneto-electric momentum transfer to atoms and molecules

    Full text link
    We report the first observation of mechanical momentum transferred to atoms and molecules upon application of crossed electric and magnetic fields. We identify this momentum as the microscopic analogue of the classical Abraham force. Several predictions of additional magneto-electrically induced mechanical momentum are addressed. One of them, proposed to result from the interaction with the quantum vacuum, is experimentally refuted, others are found to be currently below experimental detection.Comment: 4 pages, 3 figures, one tabl

    Inverse Cotton-Mouton effect of the Vacuum and of atomic systems

    Full text link
    In this letter we calculate the Inverse Cotton-Mouton Effect (ICME) for the vacuum following the predictions of Quantum ElectroDynamics. We compare the value of this effect for the vacuum with the one expected for atomic systems. We finally show that ICME could be measured for the first time for noble gases using state-of-the-art laser systems and for the quantum vacuum with near-future laser facilities like ELI and HiPER, providing in particular a test of the nonlinear behaviour of quantum vacuum at intensities below the Schwinger limit of 4.5x10^33 W/m^2.Comment: Submitted to EP

    Observation of the Inverse Cotton-Mouton Effect

    Full text link
    We report the observation of the Inverse Cotton-Mouton Effect (ICME) i.e. a magnetization induced in a medium by non resonant linearly polarized light propagating in the presence of a transverse magnetic field. We present a detailed study of the ICME in a TGG crystal showing the dependence of the measured effect on the light intensity, the optical polarization, and on the external magnetic field. We derive a relation between the Cotton-Mouton and Inverse Cotton-Mouton effects that is roughly in agreement with existing experimental data. Our results open the way to applications of the ICME in optical devices

    Possible Magnetic Chirality in Optically Chiral Magnet [Cr(CN)6_6][Mn(SS)-pnH(H2_2O)](H2_2O) Probed by Muon Spin Rotation and Relaxation

    Full text link
    Local magnetic fields in a molecule-based optically chiral magnet [Cr(CN)6_6][Mn(SS)-pnH(H2_2O)](H2_2O) (GN-S) and its enantiomer (GN-R) are studied by means of muon spin rotation and relaxation (muSR). Detailed analysis of muon precession signals under zero field observed below T_c supports the average magnetic structure suggested by neutron powder diffraction. Moreover, comparison of muSR spectra between GN-S and GN-R suggests that they are a pair of complete optical isomers in terms of both crystallographic and magnetic structure. Possibility of magnetic chirality in such a pair is discussed.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Direct observation of the high magnetic field effect on the Jahn-Teller state in TbVO4

    Get PDF
    We report the first direct observation of the influence of high magnetic fields on the Jahn-Teller (JT) transition in TbVO4. Contrary to spectroscopic and magnetic methods, X-ray diffraction directly measures the JT distortion; the splitting between the (311)/(131) and (202)/(022) pairs of Bragg reflections is proportional to the order parameter. Our experimental results are compared to mean field calculations, taking into account all possible orientations of the grains relative to the applied field, and qualitative agreement is obtained.Comment: 11 pages, 4 figures, submitted to Phys. Rev. Let

    Transverse Momentum Transfer in Atom-Light Scattering

    Full text link
    We predict a photon Hall effect in the optical cross-section of atomic hydrogen, which is caused by the interference between an electric quadrupole transition and an electric dipole transition from the ground state to 3D3/23D_{3/2} and 3P3/23P_{3/2}. This induces a magneto-transverse acceleration comparable to a fraction of gg. In atoms with a two level electric dipole transition, a much smaller transverse force is generated only when the atom is moving
    • …
    corecore