631 research outputs found

    Evidence for anisotropy in the distribution of short-lived gamma-ray bursts

    Get PDF
    Measurements of the two-point angular correlation function w(\theta) for 407 short gamma-ray bursts collected in the Current BATSE Catalogue reveal a ~2 \sigma deviation from isotropy on angular scales \theta ~ 2-4 degrees. Such an anisotropy is not observed in the distribution of long gamma-ray bursts and hints to the presence of repeated bursts for up to ~13% of the sources under exam. However, the available data cannot exclude the signal as due to the presence of large-scale structure. Under this assumption, the amplitude of the observed w(\theta) is compatible with those derived for different populations of galaxies up to redshifts ~0.5, result that suggests short gamma-ray bursts to be relatively local sources.Comment: 5 pages, 4 figures, submitted to MNRA

    Spectral properties of long and short Gamma-Ray Bursts: comparison between BATSE and Fermi bursts

    Full text link
    We compare the spectral properties of 227 Gamma Ray Bursts (GRBs) detected by the Fermi Gamma Ray Burst Monitor (GBM) up to February 2010 with those of bursts detected by the CGRO/BATSE instrument. Out of 227 Fermi GRBs, 166 have a measured peak energy E_peak_obs of their \nuF(\nu) spectrum: of these 146 and 20 belong the long and short class, respectively. Fermi long bursts follow the correlations defined by BATSE bursts between their E_peak_obs vs fluence and peak flux: as already shown for the latter ones, these correlations and their slopes do not originate from instrumental selection effects. Fermi/GBM bursts extend such correlations toward lower fluence/peak energy values with respect to BATSE ones whereas no GBM long burst with E_peak_obs exceeding a few MeV is found, despite the possibility of detecting them. Again as for BATSE, \sim 5% of long and almost all short GRBs detected by Fermi/GBM are outliers of the E_peak-isotropic equivalent energy ("Amati") correlation while no outlier (neither long nor short) of the E_peak-isotropic equivalent luminosity ("Yonetoku") correlation is found. Fermi long bursts have similar typical values of E_peak_obs but a harder low energy spectral index with respect to all BATSE events, exacerbating the inconsistency with the limiting slopes of the simplest synchrotron emission models. Although the short GRBs detected by Fermi are still only a few, we confirm that their E_peak_obs is greater and the low energy spectrum is harder than those of long ones. We discuss the robustness of these results with respect to observational biases induced by the differences between the GBM and BATSE instruments.Comment: 10 pages, 8 figures, submitted to A&

    Constraints on the bulk Lorentz factor in the internal shock scenario for gamma-ray bursts

    Get PDF
    We investigate, independently of specific emission models, the constraints on the value of the bulk Lorentz factor Gamma of a fireball. We assume that the burst emission comes from internal shocks in a region transparent to Thomson scattering and before deceleration due to the swept up external matter is effective. We consider the role of Compton drag in decelerating fast moving shells before they interact with slower ones, thus limiting the possible differences in bulk Lorentz factor of shells. Tighter constraints on the possible range of Gamma are derived by requiring that the internal shocks transform more than a few per cent of the bulk energy into radiation. Efficient bursts may require a hierarchical scenario, where a shell undergoes multiple interactions with other shells. We conclude that fireballs with average Lorentz factors larger than 1000 are unlikely to give rise to the observed bursts.Comment: 5 pages, 3 figures, accepted for publication in MNRAS, pink page

    Bulk Comptonization spectra in blazars

    Get PDF
    We study the time dependent spectra produced via the bulk Compton process by a cold, relativistic shell of plasma moving (and accelerating) along the jet of a blazar, scattering on external photons emitted by the accretion disc and reprocessed in the broad line region. Bulk Comptonization of disc photons is shown to yield a spectral component contributing in the far UV band, and would then be currently unobservable. On the contrary, the bulk Comptonization of broad line photons may yield a significant feature in the soft X-ray band. Such a feature is time-dependent and transient, and dominates over the non thermal continuum only when: a) the dissipation occurs close to, but within, the broad line region; b) other competing processes, like the synchrotron self-Compton emission, yield a negligible flux in the X-ray band. The presence of a bulk Compton component may account for the X-ray properties of high redshift blazars that show a flattening (and possibly a hump) in the soft X-rays, previously interpreted as due to intrinsic absorption. We discuss why the conditions leading to a detectable bulk Compton feature might be met only occasionally in high redshift blazars, concluding that the absence of such a feature in the spectra of most blazars should not be taken as evidence against matter--dominated relativistic jets. The detection of such a component carries key information on the bulk Lorentz factor and kinetic energy associated to (cold) leptons.Comment: 8 pages; 4 figures; MNRAS, accepte

    The peak luminosity - peak energy correlation in GRBs

    Full text link
    We derive the peak luminosity - peak energy (L_iso - E_peak) correlation using 22 long Gamma-Ray Bursts (GRBs) with firm redshift measurements. We find that its slope is similar to the correlation between the time integrated isotropic emitted energy E_iso and E_peak (Amati et al. 2002). For the 15 GRBs in our sample with estimated jet opening angle we compute the collimation corrected peak luminosity L_gamma, and find that it correlates with E_peak. This has, however, a scatter larger than the correlation between E_peak and E_gamma (the time integrated emitted energy, corrected for collimation; Ghirlanda et al. 2004), which we ascribe to the fact that the opening angle is estimated through the global energetics. We have then selected a large sample of 442 GRBs with pseudo--redshifts, derived through the lag-luminosity relation, to test the existence of the L_iso-E_peak correlation. With this sample we also explore the possibility of a correlation between time resolved quantities, namely L_iso,p and the peak energy at the peak of emission E_peak,p.Comment: 5 pages, 5 figures, 2 tables - MNRAS Letters submitte

    A fireworks model for Gamma-Ray Bursts

    Full text link
    The energetics of the long duration GRB phenomenon is compared with models of a rotating Black Hole (BH) in a strong magnetic field generated by an accreting torus. A rough estimate of the energy extracted from a rotating BH with the Blandford-Znajek mechanism is obtained with a very simple assumption: an inelastic collision between the rotating BH and the torus. The GRB energy emission is attributed to an high magnetic field that breaks down the vacuum around the BH and gives origin to a e+- fireball. Its subsequent evolution is hypothesized, in analogy with the in-flight decay of an elementary particle, to evolve in two distinct phases. The first one occurs close to the engine and is responsible of energizing and collimating the shells. The second one consists of a radiation dominated expansion, which correspondingly accelerates the relativistic photon--particle fluid and ends at the transparency time. This mechanism simply predicts that the observed Lorentz factor is determined by the product of the Lorentz factor of the shell close to the engine and the Lorentz factor derived by the expansion. An anisotropy in the fireball propagation is thus naturally produced, whose degree depends on the bulk Lorentz factor at the end of the collimation phase.Comment: Accepted for publication in MNRA
    corecore