180,986 research outputs found

    Random Isotropic Structures and Possible Glass Transitions in Diblock Copolymer Melts

    Get PDF
    We study the microstructural glass transitions in diblock-copolymer melts using a thermodynamic replica approach. Our approach performs an expansion in terms of the natural smallness parameter -- the inverse of the scaled degree of polymerization, which allows us to systematically study the approach to mean-field behavior as the degree of polymerization increases. We find that in the limit of infinite long polymer chains, both the onset of glassiness and the vitrification transition (Kauzmann temperature) collapse to the mean-field spinodal, suggesting that the spinodal can be regarded as the mean-field signature for glass transitions in this class of systems. We also study the order-disorder transitions (ODT) within the same theoretical framework; in particular, we include the leading-order fluctuation corrections due to the cubic interaction in the coarse-grained Hamiltonian, which has been ignored in previous works on the ODT in block copolymers. We find that the cubic term stabilizes both the ordered (body-centered-cubic) phase and the glassy state relative to the disordered phase. While in melts of symmetric copolymers the glass transition always occurs after the order-disorder transition (below the ODT temperature), for asymmetric copolymers, it is possible that the glass transition precedes the ordering transition.Comment: An error corrected in the referenc

    Analysis of the strong coupling constant GDsβˆ—DsΟ•G_{D_{s}^{*}D_{s}\phi} and the decay width of Dsβˆ—β†’DsΞ³D_{s}^{*}\rightarrow D_{s}\gamma with QCD sum rules

    Full text link
    In this article, we calculate the form factors and the coupling constant of the vertex Dsβˆ—DsΟ•D_{s}^{*}D_{s}\phi using the three-point QCD sum rules. We consider the contributions of the vacuum condensates up to dimension 77 in the operator product expansion(OPE). And all possible off-shell cases are considered, Ο•\phi, DsD_{s} and Dsβˆ—D_{s}^{*}, resulting in three different form factors. Then we fit the form factors into analytical functions and extrapolate them into time-like regions, which giving the coupling constant for the process. Our analysis indicates that the coupling constant for this vertex is GDsβˆ—DsΟ•=4.12Β±0.70GeVβˆ’1G_{Ds*Ds\phi}=4.12\pm0.70 GeV^{-1}. The results of this work are very useful in the other phenomenological analysis. As an application, we calculate the coupling constant for the decay channel Dsβˆ—β†’DsΞ³D_{s}^{*}\rightarrow D_{s}\gamma and analyze the width of this decay with the assumption of the vector meson dominance of the intermediate Ο•(1020)\phi(1020). Our final result about the decay width of this decay channel is Ξ“=0.59Β±0.15keV\Gamma=0.59\pm0.15keV.Comment: arXiv admin note: text overlap with arXiv:1501.03088 by other author

    Robust H∞ control for discrete-time fuzzy systems with infinite-distributed delays

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the robust H∞ control problem for a class of discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delays and uncertain parameters. The time delay is assumed to be infinitely distributed in the discrete-time domain, and the uncertain parameters are norm-bounded. By using the linear matrix inequality (LMI) technique, sufficient conditions are derived for ensuring the exponential stability as well as the H infin performance for the closed-loop fuzzy control system. It is also shown that the controller gain can be characterized in terms of the solution to a set of LMIs, which can be easily solved by using standard software packages. A simulation example is exploited in order to illustrate the effectiveness of the proposed design procedures

    Microstructural characterisation and thermal stability of an Mg-Al-Sr alloy prepared by rheo-diecasting

    Get PDF
    A commercial Mg-6Al-2Sr (AJ62) alloy has been prepared by a semisolid rheo-diecasting (RDC) process. The microstructure of the RDC alloy exhibits typical semisolid solidification features, i.e., 8.4 vol% primary Ξ±-Mg globules (23 ΞΌm in diameter), formed in the slurry maker at the primary solidification stage, uniformly distributed in the matrix of fine Ξ±-Mg grain size (8.2 ΞΌm) and intergranular eutectic Al4Sr lamellae, which resulted from secondary solidification inside the die. A ternary Mg-Al-Sr phase was also observed. Heat treatment revealed the extreme thermal stability of the RDC AJ62 alloy. The hardness showed little change up to 12 hours at 450Β°C, whilst the Al4Sr eutectic lamellae were broken up, spheroidised and coarsened during the annealing. The RDC alloy offers superior mechanical properties, especially ductility, over the same alloy produced by high pressure die-casting

    Error-constrained filtering for a class of nonlinear time-varying delay systems with non-gaussian noises

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this technical note, the quadratic error-constrained filtering problem is formulated and investigated for discrete time-varying nonlinear systems with state delays and non-Gaussian noises. Both the Lipschitz-like and ellipsoid-bounded nonlinearities are considered. The non-Gaussian noises are assumed to be unknown, bounded, and confined to specified ellipsoidal sets. The aim of the addressed filtering problem is to develop a recursive algorithm based on the semi-definite programme method such that, for the admissible time-delays, nonlinear parameters and external bounded noise disturbances, the quadratic estimation error is not more than a certain optimized upper bound at every time step. The filter parameters are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programme method. A simulation example is exploited to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Leverhulme Trust of the U.K., the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National Natural Science Foundation of China under Grant 61028008 and Grant 61074016, the Shanghai Natural Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany. Recommended by Associate Editor E. Fabre
    • …
    corecore