24,288 research outputs found

    A comparative study of the electronic and magnetic properties of BaFe_2As_2 and BaMn_2As_2 using the Gutzwiller approximation

    Full text link
    To elucidate the role played by the transition metal ion in the pnictide materials, we compare the electronic and magnetic properties of BaFe_{2}As_{2} with BaMn_{2}As_{2}. To this end we employ the LDA+Gutzwiller method to analyze the mass renormalizations and the size of the ordered magnetic moment of the two systems. We study a model that contains all five transition metal 3d orbitals together with the Ba-5d and As-4p states (ddp-model) and compare these results with a downfolded model that consists of Fe/Mn d-states only (d-model). Electronic correlations are treated using the multiband Gutzwiller approximation. The paramagnetic phase has also been investigated using LDA+Gutzwiller method with electron density self-consistency. The renormalization factors for the correlated Mn 3d orbitals in the paramagnetic phase of BaMn_{2}As_{2} are shown to be generally smaller than those of BaFe_{2}As_{2}, which indicates that BaMn_{2}As_{2} has stronger electron correlation effect than BaFe_{2}As_{2}. The screening effect of the main As 4p electrons to the correlated Fe/Mn 3d electrons is evident by the systematic shift of the results to larger Hund's rule coupling J side from the ddp-model compared with those from the d-model. A gradual transition from paramagnetic state to the antiferromagnetic ground state with increasing J is obtained for the models of BaFe_{2}As_{2} which has a small experimental magnetic moment; while a rather sharp jump occurs for the models of BaMn_{2}As_{2}, which has a large experimental magnetic moment. The key difference between the two systems is shown to be the d-level occupation. BaMn_{2}As_{2}, with approximately five d-electrons per Mn atom, is for same values of the electron correlations closer to the transition to a Mott insulating state than BaFe_{2}As_{2}. Here an orbitally selective transition, required for a system with close to six electrons only occurs at significantly larger values for the Coulomb interactions

    A model of rotating hotspots for 3:2 frequency ratio of HFQPOs in black hole X-ray binaries

    Full text link
    We propose a model to explain a puzzling 3:2 frequency ratio of high frequency quasi-periodic oscillations (HFQPOs) in black hole (BH) X-ray binaries, GRO J1655-40, GRS 1915+105 and XTE J1550-564. In our model a non-axisymmetric magnetic coupling (MC) of a rotating black hole (BH) with its surrounding accretion disc coexists with the Blandford-Znajek (BZ) process. The upper frequency is fitted by a rotating hotspot near the inner edge of the disc, which is produced by the energy transferred from the BH to the disc, and the lower frequency is fitted by another rotating hotspot somewhere away from the inner edge of the disc, which arises from the screw instability of the magnetic field on the disc. It turns out that the 3:2 frequency ratio of HFQPOs in these X-ray binaries could be well fitted to the observational data with a much narrower range of the BH spin. In addition, the spectral properties of HFQPOs are discussed. The correlation of HFQPOs with jets from microquasars is contained naturally in our model.Comment: 8 pages, 4 figures. accepted by MNRA

    A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms

    Get PDF
    Expressions for displacements on the surface of a layered half-space due to point force are given in terms of generalized reflection and transmission coefficient matrices (Kennett, 1980) and the discrete wavenumber summation method (Bouchon, 1981). The Bouchon method with complex frequencies yields accurate near-field dynamic and static solutions. The algorithm is extended to include simultaneous evaluation of multiple sources at different depths. This feature is the same as in Olson's finite element discrete Fourier Bessel code (DWFE) (Olson, 1982). As numerical examples, we calculate some layered half-space problems. The results agree with synthetics generated with the Cagniard-de Hoop technique, P-SV modes, and DWFE codes. For a 10-layered crust upper mantle model with a bandwidth of 0 to 10 Hz, this technique requires one-tenth the time of the DWFE calculation. In the presence of velocity gradients, where finer layering is required, the DWFE code is more efficient

    Fractional Quantum Hall Effect in Topological Flat Bands with Chern Number Two

    Full text link
    Recent theoretical works have demonstrated various robust Abelian and non-Abelian fractional topological phases in lattice models with topological flat bands carrying Chern number C=1. Here we study hard-core bosons and interacting fermions in a three-band triangular-lattice model with the lowest topological flat band of Chern number C=2. We find convincing numerical evidence of bosonic fractional quantum Hall effect at the ν=1/3\nu=1/3 filling characterized by three-fold quasi-degeneracy of ground states on a torus, a fractional Chern number for each ground state, a robust spectrum gap, and a gap in quasihole excitation spectrum. We also observe numerical evidence of a robust fermionic fractional quantum Hall effect for spinless fermions at the ν=1/5\nu=1/5 filling with short-range interactions.Comment: 5 pages, 7 figures, with Supplementary Materia

    Neutrino emission from a GRB afterglow shock during an inner supernova shock breakout

    Full text link
    The observations of a nearby low-luminosity gamma-ray burst (GRB) 060218 associated with supernova SN 2006aj may imply an interesting astronomical picture where a supernova shock breakout locates behind a relativistic GRB jet. Based on this picture, we study neutrino emission for early afterglows of GRB 060218-like GRBs, where neutrinos are expected to be produced from photopion interactions in a GRB blast wave that propagates into a dense wind. Relativistic protons for the interactions are accelerated by an external shock, while target photons are basically provided by the incoming thermal emission from the shock breakout and its inverse-Compton scattered component. Because of a high estimated event rate of low-luminosity GRBs, we would have more opportunities to detect afterglow neutrinos from a single nearby GRB event of this type by IceCube. Such a possible detection could provide evidence for the picture described above.Comment: 6 pages, 2 figures, accepted for publication in MNRA
    corecore