32,335 research outputs found

    Evolution of O Abundance Relative to Fe

    Get PDF
    We present a three-component mixing model for the evolution of O abundance relative to Fe, taking into account the contributions of the first very massive (> 100 solar masses) stars formed from Big Bang debris. We show that the observations of O and Fe abundances in metal-poor stars in the Galaxy by Israelian et al. and Boesgaard et al. can be well represented both qualitatively and quantitatively by this model. Under the assumption of an initial Fe ([Fe/H] = -3) and O inventory due to the prompt production by the first very massive stars, the data at -3 < [Fe/H] < -1 are interpreted to result from the addition of O and Fe only from type II supernovae (SNII) to the prompt inventory. At [Fe/H] = -1, SNII still contribute O while both SNII and type Ia supernovae contribute Fe. During this later stage, (O/Fe) sharply drops off to an asymptotic value of 0.8(O/Fe)_sun. The value of (O/Fe) for the prompt inventory at [Fe/H] = -3 is found to be (O/Fe) = 20(O/Fe)_sun. This result suggests that protogalaxies with low ``metallicities'' should exhibit high values of (O/Fe). The C/O ratio produced by the first very massive stars is expected to be much less than 1 so that all the C should be tied up as CO and that C dust and hydrocarbon compounds should be quite rare at epochs corresponding to [Fe/H] < -3.Comment: 25 pages, 8 postscript figures, to appear in Ap

    A Model for Abundances in Metal-Poor Stars

    Get PDF
    It is argued that the abundances of r-process related elements in stars with -3<[Fe/H]<-1 can be explained by the contributions of three sources. The sources are: the first generations of very massive (>100 solar masses) stars that are formed from Big Bang debris and are distinct from SNII, and two types of SNII, the H and L events, which can occur only at [Fe/H]>-3. The H events are of high frequency and produce dominantly heavy (A>130) r-elements but no Fe (presumably leaving behind black holes). The L events are of low frequency and produce Fe and dominantly light (A<130) r-elements (essentially none above Ba). By using the observed abundances in two ultra-metal-poor stars and the solar r-abundances, the initial or prompt inventory of elements produced by the first generations of very massive stars and the yields of H and L events can be determined. The abundances of a large number of elements in a star can then be calculated from the model by using only the observed Eu and Fe abundances. To match the model results and the observational data for stars with -3<[Fe/H]<-1 requires that the solar r-abundances for Sr, Y, Zr, and Ba must be significantly increased from the standard values. Whether the solar r-components of these elements used here to obtain a fit to the stellar data can be reconciled with those obtained from solar abundances by subtracting the s-components calculated from models is not clear.Comment: 47 pages, 19 figures, to appear in Ap

    Prompt Iron Enrichment, Two r-Process Components, and Abundances in Very Metal-Poor Stars

    Get PDF
    We present a model to explain the wide range of abundances for heavy r-process elements (mass number A > 130) at low [Fe/H]. This model requires rapid star formation and/or an initial population of supermassive stars in the earliest condensed clots of matter to provide a prompt or initial Fe inventory. Subsequent Fe and r-process enrichment was provided by two types of supernovae: one producing heavy r-elements with no Fe on a rather short timescale and the other producing light r-elements (A < or = 130) with Fe on a much longer timescale.Comment: 5 pages, 2 postscript figures, to appear in ApJ

    Fluctuation of the Initial Conditions and Its Consequences on Some Observables

    Full text link
    We show effects of the event-by-event fluctuation of the initial conditions (IC) in hydrodynamic description of high-energy nuclear collisions on some observables. Such IC produce not only fluctuations in observables but, due to their bumpy structure, several non-trivial effects appear. They enhance production of isotropically distributed high-pT particles, making v2 smaller there. Also, they reduce v2 in the forward and backward regions where the global matter density is smaller, so where such effects become more efficacious. They may also produce the so-called ridge effect in the two large-pT particle correlation.Comment: 6 pages, 6 figures, presented at the IV Workshop on Particle Correlations and Femtoscopy (WPCF2008), Krakow, Poland, 11-14 Sep 200

    Exchange and correlation near the nucleus in density functional theory

    Full text link
    The near nucleus behavior of the exchange-correlation potential vxc(r)v_{xc}({\bf r}) in Hohenberg-Kohn-Sham density functional theory is investigated. It is shown that near the nucleus the linear term of O(r)O(r) of the spherically averaged exchange-correlation potential vˉxc(r){\bar v}_{xc}(r) is nonzero, and that it arises purely from the difference between the kinetic energy density at the nucleus of the interacting system and the noninteracting Kohn-Sham system. An analytical expression for the linear term is derived. Similar results for the exchange vx(r)v_{x}({\bf r}) and correlation vc(r)v_{c}({\bf r}) potentials are also obtained separately. It is further pointed out that the linear term in vxc(r)v_{xc}({\bf r}) arising mainly from vc(r)v_{c}({\bf r}) is rather small, and vxc(r)v_{xc}({\bf r}) therefore has a nearly quadratic structure near the nucleus. Implications of the results for the construction of the Kohn-Sham system are discussed with examples.Comment: 10 page

    Stability of the Period-Doubled Core of the 90-degree Partial in Silicon

    Full text link
    In a recent Letter [N. Lehto and S. Oberg, Phys. Rev. Lett. 80, 5568 (1998)], Lehto and Oberg investigated the effects of strain fields on the core structure of the 90-degree partial dislocation in silicon, especially the influence of the choice of supercell periodic boundary conditions in theoretical simulations. We show that their results for the relative stability between the two structures are in disagreement with cell-size converged tight-binding total energy (TBTE) calculations, which suggest the DP core to be more stable, regardless of the choice of boundary condition. Moreover, we argue that this disagreement is due to their use of a Keating potential.Comment: 1 page. Submitted to Comments section of PRL. Also available at http://www.physics.rutgers.edu/~dhv/preprints/rn_dcom/index.htm

    Insulator-metal transition shift related to magnetic polarons in La0.67-xYxCa0.33MnO3

    Full text link
    The magnetic transport properties have been measured for La0.67-xYxCa0.33MnO3 (0 <= x <= 0.14) system. It was found that the transition temperature Tp almost linearly moves to higher temperature as H increases. Electron spin resonance confirms that above Tp, there exist ferromagnetic clusters. From the magnetic polaron point of view, the shift of Tp vs. H was understood, and it was estimated that the size of the magnetic polaron is of 9.7~15.4 angstrom which is consistent with the magnetic correlation length revealed by the small-angle neutron-scattering technique. The transport properties at temperatures higher than Tp conform to the variable-range hopping mechanism.Comment: 22 pages, 6 figures, pdf, to be published in Euro. Phys. J.

    Human African trypanosomiasis : the current situation in endemic regions and the risks for non-endemic regions from imported cases

    Get PDF
    Human African trypanosomiasis (HAT) is caused by Trypanosoma brucei gambiense and T. b. rhodesiense and caused devastating epidemics during the 20th century. Due to effective control programs implemented in the last two decades, the number of reported cases has fallen to a historically low level. Although fewer than 977 cases were reported in 2018 in endemic countries, HAT is still a public health problem in endemic regions until it is completely eliminated. In addition, almost 150 confirmed HAT cases were reported in non-endemic countries in the last three decades. The majority of non-endemic HAT cases were reported in Europe, United States and South Africa, due to historical alliances, economic links or geographic proximity to disease endemic countries. Furthermore, with the implementation of the “Belt and Road” project, sporadic imported HAT cases have been reported in China as a warning sign of tropical diseases prevention. In this paper, we explore and interpret the data on HAT incidence and find no positive correlation between the number of HAT cases from endemic and non-endemic countries.This data will provide useful information for better understanding the imported cases of HAT globally in the post-elimination phase

    Scalable, Time-Responsive, Digital, Energy-Efficient Molecular Circuits using DNA Strand Displacement

    Full text link
    We propose a novel theoretical biomolecular design to implement any Boolean circuit using the mechanism of DNA strand displacement. The design is scalable: all species of DNA strands can in principle be mixed and prepared in a single test tube, rather than requiring separate purification of each species, which is a barrier to large-scale synthesis. The design is time-responsive: the concentration of output species changes in response to the concentration of input species, so that time-varying inputs may be continuously processed. The design is digital: Boolean values of wires in the circuit are represented as high or low concentrations of certain species, and we show how to construct a single-input, single-output signal restoration gate that amplifies the difference between high and low, which can be distributed to each wire in the circuit to overcome signal degradation. This means we can achieve a digital abstraction of the analog values of concentrations. Finally, the design is energy-efficient: if input species are specified ideally (meaning absolutely 0 concentration of unwanted species), then output species converge to their ideal concentrations at steady-state, and the system at steady-state is in (dynamic) equilibrium, meaning that no energy is consumed by irreversible reactions until the input again changes. Drawbacks of our design include the following. If input is provided non-ideally (small positive concentration of unwanted species), then energy must be continually expended to maintain correct output concentrations even at steady-state. In addition, our fuel species - those species that are permanently consumed in irreversible reactions - are not "generic"; each gate in the circuit is powered by its own specific type of fuel species. Hence different circuits must be powered by different types of fuel. Finally, we require input to be given according to the dual-rail convention, so that an input of 0 is specified not only by the absence of a certain species, but by the presence of another. That is, we do not construct a "true NOT gate" that sets its output to high concentration if and only if its input's concentration is low. It remains an open problem to design scalable, time-responsive, digital, energy-efficient molecular circuits that additionally solve one of these problems, or to prove that some subset of their resolutions are mutually incompatible.Comment: version 2: the paper itself is unchanged from version 1, but the arXiv software stripped some asterisk characters out of the abstract whose purpose was to highlight words. These characters have been replaced with underscores in version 2. The arXiv software also removed the second paragraph of the abstract, which has been (attempted to be) re-inserted. Also, although the secondary subject is "Soft Condensed Matter", this classification was chosen by the arXiv moderators after submission, not chosen by the authors. The authors consider this submission to be a theoretical computer science paper

    Ab initio Study of Misfit Dislocations at the SiC/Si(001) Interface

    Full text link
    The high lattice mismatched SiC/Si(001) interface was investigated by means of combined classical and ab initio molecular dynamics. Among the several configurations analyzed, a dislocation network pinned at the interface was found to be the most efficient mechanism for strain relief. A detailed description of the dislocation core is given, and the related electronic properties are discussed for the most stable geometry: we found interface states localized in the gap that may be a source of failure of electronic devices
    corecore