44,851 research outputs found

    Modulational instability of two-component Bose-Einstein condensates in an optical lattice

    Full text link
    We study modulational instability of two-component Bose-Einstein condensates in an optical lattice, which is modelled as a coupled discrete nonlinear Schr \"{o}dinger equation. The excitation spectrum and the modulational instability condition of the total system are presented analytically. In the long-wavelength limit, our results agree with the homogeneous two-component Bose-Einstein condensates case. The discreteness effects result in the appearance of the modulational instability for the condensates in miscible region. The numerical calculations confirm our analytical results and show that the interspecies coupling can transfer the instability from one component to another.Comment: 4 pages, 3 figures (to be published in Phys. Rev. A

    Nucleon Sigma Term and In-medium Quark Condensate in the Modified Quark-Meson Coupling Model

    Full text link
    We evaluate the nucleon sigma term and in-medium quark condensate in the modified quark-meson coupling model which features a density-dependent bag constant. We obtain a nucleon sigma term consistent with its empirical value, which requires a significant reduction of the bag constant in the nuclear medium similar to those found in the previous works. The resulting in-medium quark condensate at low densities agrees well with the model independent linear order result. At higher densities, the magnitude of the in-medium quark condensate tends to increase, indicating no tendency toward chiral symmetry restoration.Comment: 9 pages, modified version to be publishe

    Semi-Inclusive B\to K(K^*) X Decays with Initial Bound State Effects

    Get PDF
    The effects of initial bb quark bound state for the semi-inclusive decays B→K(K∗)XB\to K(K^*) X are studied using light cone expansion and heavy quark effective theory methods. We find that the initial bound state effects on the branching ratios and CP asymmetries are small. In the light cone expansion approach, the CP-averaged branching ratios are increased by about 2% with respect to the free bb-quark decay. For Bˉ0→K−(K∗−)X\bar B^0 \to K^- (K^{*-}) X, the CP-averaged branching ratios are sensitive to the phase γ\gamma and the CP asymmetry can be as large as 7% (14%), whereas for B−→Kˉ0(Kˉ∗0)XB^-\to \bar K^0 (\bar K^{*0})X the CP-averaged branching ratios are not sensitive to γ\gamma and the CP asymmetries are small (<1< 1%). The CP-averaged branching ratios are predicted to be in the ranges (0.53∼1.5)×10−4(0.53 \sim 1.5)\times 10^{-4} [(0.25∼2.0)×10−4(0.25 \sim 2.0)\times 10^{-4}] for Bˉ0→K−(K∗−)X\bar B^0 \to K^- (K^{*-})X and (0.77∼0.84)×10−4(0.77 \sim 0.84)\times 10^{-4} [(0.67∼0.74)×10−4(0.67 \sim 0.74)\times 10^{-4}] for B−→Kˉ0(Kˉ∗0)XB^-\to \bar K^0 (\bar K^{*0}) X, depending on the value of the CP violating phase γ\gamma. In the heavy quark effective theory approach, we find that the branching ratios are decreased by about 10% and the CP asymmetries are not affected. These predictions can be tested in the near future.Comment: 29 pages, 12 ps figure

    Tuning Jeff = 1/2 Insulating State via Electron Doping and Pressure in Double-Layered Iridate Sr3Ir2O7

    Get PDF
    Sr3Ir2O7 exhibits a novel Jeff=1/2 insulating state that features a splitting between Jeff=1/2 and 3/2 bands due to spin-orbit interaction. We report a metal-insulator transition in Sr3Ir2O7 via either dilute electron doping (La3+ for Sr2+) or application of high pressure up to 35 GPa. Our study of single-crystal Sr3Ir2O7 and (Sr1-xLax)3Ir2O7 reveals that application of high hydrostatic pressure P leads to a drastic reduction in the electrical resistivity by as much as six orders of magnitude at a critical pressure, PC = 13.2 GPa, manifesting a closing of the gap; but further increasing P up to 35 GPa produces no fully metallic state at low temperatures, possibly as a consequence of localization due to a narrow distribution of bonding angles {\theta}. In contrast, slight doping of La3+ ions for Sr2+ ions in Sr3Ir2O7 readily induces a robust metallic state in the resistivity at low temperatures; the magnetic ordering temperature is significantly suppressed but remains finite for (Sr0.95La0.05)3Ir2O7 where the metallic state occurs. The results are discussed along with comparisons drawn with Sr2IrO4, a prototype of the Jeff = 1/2 insulator.Comment: five figure
    • …
    corecore