89,114 research outputs found
Sensitivity-analysis method for inverse simulation application
An important criticism of traditional methods of inverse simulation that are based on the Newton–Raphson algorithm is that they suffer from numerical problems. In this paper these problems are discussed and a new method based on sensitivity-analysis theory is developed and evaluated. The Jacobian matrix may be calculated by solving a sensitivity equation and this has advantages over the approximation methods that are usually applied when the derivatives of output variables with respect to inputs cannot be found analytically. The methodology also overcomes problems of input-output redundancy that arise in the traditional approaches to inverse simulation. The sensitivity- analysis approach makes full use of information within the time interval over which key quantities are compared, such as the difference between calculated values and the given ideal maneuver after each integration step. Applications to nonlinear HS125 aircraft and Lynx helicopter models show that, for this sensitivity-analysis method, more stable and accurate results are obtained than from use of the traditional Newton–Raphson approach
Symmetry protected fractional Chern insulators and fractional topological insulators
In this paper we construct fully symmetric wavefunctions for the
spin-polarized fractional Chern insulators (FCI) and time-reversal-invariant
fractional topological insulators (FTI) in two dimensions using the parton
approach. We show that the lattice symmetry gives rise to many different FCI
and FTI phases even with the same filling fraction (and the same
quantized Hall conductance in FCI case). They have different
symmetry-protected topological orders, which are characterized by different
projective symmetry groups. We mainly focus on FCI phases which are realized in
a partially filled band with Chern number one. The low-energy gauge groups of a
generic FCI wavefunctions can be either or
the discrete group , and in the latter case the associated low-energy
physics are described by Chern-Simons-Higgs theories. We use our construction
to compute the ground state degeneracy. Examples of FCI/FTI wavefunctions on
honeycomb lattice and checkerboard lattice are explicitly given. Possible
non-Abelian FCI phases which may be realized in a partially filled band with
Chern number two are discussed. Generic FTI wavefunctions in the absence of
spin conservation are also presented whose low-energy gauge groups can be
either or . The constructed wavefunctions
also set up the framework for future variational Monte Carlo simulations.Comment: 24 pages, 13 figures, published versio
- …