11,984 research outputs found

    Theory of Polaron Resonance in Quantum Dots and Quantum-Dot Molecules

    Full text link
    The theory of exciton coupling to photons and LO phonons in quantum dots (QDs) and quantum-dot molecules (QDMs) is presented. Resonant-round trips of the exciton between the ground (bright) and excited (dark or bright) states mediated by the LO-phonon alter the decay time and yield the Rabi oscillation. The initial distributions of the population in the ground and the excited states dominate the oscillating amplitude and frequency. This property provides a detectable signature to the information stored in a qubit made from QD or QDM for a wide range of temperature T. Our results presented herein provide an explanation to the anomaly on T-dependent decay in self-assembled InGaAs/GaAs QDMs recently reported by experiment.Comment: 30 pages, 8 figure

    Black hole masses of tidal disruption event host galaxies

    Get PDF
    The mass of the central black hole in a galaxy that hosted a tidal disruption event (TDE) is an important parameter in understanding its energetics and dynamics. We present the first homogeneously measured black hole masses of a complete sample of 12 optically/UV selected TDE host galaxies (down to ghostg_{host}≤\leq22 mag and zz=0.37) in the Northern sky. The mass estimates are based on velocity dispersion measurements, performed on late time optical spectroscopic observations. We find black hole masses in the range 3×\times105^5 M⊙_{\odot}≤\leqMBH_{\rm BH}≤\leq2×\times107^7 M⊙_{\odot}. The TDE host galaxy sample is dominated by low mass black holes (∼\sim106^6 M⊙_{\odot}), as expected from theoretical predictions. The blackbody peak luminosity of TDEs with MBH_{\rm BH}≤\leq107.1^{7.1} M⊙_{\odot} is consistent with the Eddington limit of the SMBH, whereas the two TDEs with MBH_{\rm BH}≥\geq107.1^{7.1} M⊙_{\odot} have peak luminosities below their SMBH Eddington luminosity, in line with the theoretical expectation that the fallback rate for MBH_{\rm BH}≥\geq107.1^{7.1} M⊙_{\odot} is sub-Eddington. In addition, our observations suggest that TDEs around lower mass black holes evolve faster. These findings corroborate the standard TDE picture in 106^6 M⊙_{\odot} black holes. Our results imply an increased tension between observational and theoretical TDE rates. By comparing the blackbody emission radius with theoretical predictions, we conclude that the optical/UV emission is produced in a region consistent with the stream self-intersection radius of shallow encounters, ruling out a compact accretion disk as the direct origin of the blackbody radiation at peak brightness.Comment: 16 pages, 9 figures. Submitted to MNRAS; including minor revisions suggested by the refere

    Interaction induced ferro-electricity in the rotational states of polar molecules

    Full text link
    We show that a ferro-electric quantum phase transition can be driven by the dipolar interaction of polar molecules in the presence a micro-wave field. The obtained ferro-electricity crucially depends on the harmonic confinement potential, and the resulting dipole moment persists even when the external field is turned off adiabatically. The transition is shown to be second order for fermions and for bosons of a smaller permanent dipole moment, but is first order for bosons of a larger moment. Our results suggest the possibility of manipulating the microscopic rotational state of polar molecules by tuning the trap's aspect ratio (and other mesoscopic parameters), even though the later's energy scale is smaller than the former's by six orders of magnitude.Comment: 4 pages and 4 figure

    Carbonate mineral saturation states in the East China Sea: present conditions and future scenarios

    Get PDF
    To assess the impact of rising atmospheric CO<sub>2</sub> and eutrophication on the carbonate chemistry of the East China Sea shelf waters, saturation states (Ω) for two important biologically relevant carbonate minerals – calcite (&Omega;<sub>c</sub>) and aragonite (&Omega;<sub>a</sub>) – were calculated throughout the water column from dissolved inorganic carbon (DIC) and total alkalinity (TA) data collected in spring and summer of 2009. Results show that the highest &Omega;<sub>c</sub> (&sim;9.0) and &Omega;<sub>a</sub> (&sim;5.8) values were found in surface water of the Changjiang plume area in summer, whereas the lowest values (&Omega;<sub>c</sub> = &sim;2.7 and &Omega;<sub>a</sub> = &sim;1.7) were concurrently observed in the bottom water of the same area. This divergent behavior of saturation states in surface and bottom waters was driven by intensive biological production and strong stratification of the water column. The high rate of phytoplankton production, stimulated by the enormous nutrient discharge from the Changjiang, acts to decrease the ratio of DIC to TA, and thereby increases Ω values. In contrast, remineralization of organic matter in the bottom water acts to increase the DIC to TA ratio, and thus decreases Ω values. The projected result shows that continued increases of atmospheric CO<sub>2</sub> under the IS92a emission scenario will decrease Ω values by 40–50% by the end of this century, but both the surface and bottom waters will remain supersaturated with respect to calcite and aragonite. Nevertheless, superimposed on such Ω decrease is the increasing eutrophication, which would mitigate or enhance the Ω decline caused by anthropogenic CO<sub>2</sub> uptake in surface and bottom waters, respectively. Our simulation reveals that, under the combined impact of eutrophication and augmentation of atmospheric CO<sub>2</sub>, the bottom water of the Changjiang plume area will become undersaturated with respect to aragonite (&Omega;<sub>a</sub> = &sim;0.8) by the end of this century, which would threaten the health of the benthic ecosystem

    Quark-lepton mass unification at TeV scales

    Full text link
    A scenario combining a model of early (TeV) unification of quarks and leptons with the physics of large extra dimensions provides a natural mechanism linking quark and lepton masses at TeV scale. This has been dubbed as early quark-lepton mass unification by one of us (PQH) in one of the two models of early quark-lepton unification, which are consistent with data, namely SU(4)_PS \otimes SU(2)_L \otimes SU(2)_R \otimes SU(2)_H. In particular, it focused on the issue of naturally light Dirac neutrino. The present paper will focus on similar issues in the other model, namely SU(4)_PS \otimes SU(3)_L \otimes SU(3)_H.Comment: Accepted for publication in PRD: The new version is in agreement with the accepted manuscrip

    Difference equation approach to two-thermocouple sensor characterization in constant velocity flow environments

    Get PDF
    Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation sDEd approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples
    • …
    corecore